

AQUIND Limited

AQUIND INTERCONNECTOR

Design and Access Statement - Appendix 3 -SWDACMS - Appendix 8 Aquind Drainage Design Additional GI - Factual Report

The Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 – Regulation 5(2)q

Document Ref: 5.5.1 PINS Ref.: EN020022

AQUIND Limited

AQUIND INTERCONNECTOR

Design and Access Statement - Appendix 3 -SWDACMS - Appendix 8 Aquind Drainage Design Additional GI - Factual Report

PINS REF.: EN020022 DOCUMENT: 5.5.1

DATE: 1 MARCH 2021

WSP WSP House 70 Chancery Lane London WC2A 1AF +44 20 7314 5000 www.wsp.com

Ground Investigation

www.geotechnics.co.uk

Aquind Drainage Design Additional GI

Factual Report

for Aquind Limited

Engineer : WSP UK Limited

Project Number PE201667

January 2021

Issuing Office

South West Office The Geotechnical Centre Unit 5, Orchard Court Heron Road, Sowton Exeter EX2 7NR Tel: 01392 463110 mail@exeter.geotechnics.co.uk

Head Office The Geotechnical Centre 203 Torrington Avenue Tile Hill Coventry CV4 9UT Tel: 02476 694664 mail@geotechnics.co.uk North West Office The Geotechnical Centre Unit I, Borders Industrial Park River Lane, Saltney Chester CH4 8RJ Tel: 01244 671117 mail@chester.geotechnics.co.uk North East Office The Geotechnical Centre Unit I, Bypass Park Estate Sherburn-in-Elmet Leeds LS25 6EP Tel: 01977 525030 mail@yorkshire.geotechnics.co.uk Ground Investigation at

Factual Report

Aquind Drainage Design Additional GI

for Aquind Limited

Engineer : WSP UK Limited Project No: PE201667 January 2021

LIST OF CONTENTS

Page No

1.0	INTR	INTRODUCTION							
2.0	OBJE	OBJECT AND SCOPE OF THE INVESTIGATION							
3.0	PRES	PRESENTATION							
4.0	THE	SITE	I						
	4 . I	Location	I						
	4.2	Site Geology	2						
5.0	PROG	CEDURE	2						
	5.I	Commissioning	2						
	5.2	General	2						
	5.3	Combined Dynamic Sample and Rotary Boreholes	3						
	5.4	Trial Pits	3						
	5.5	In Situ Permeability Tests	3						
	5.6	Soakaway Tests	3						
	5.7	Explosive Ordnance Clearance	3						
6.0	LABC	ORATORY TESTING	4						
	6. I	Geotechnical	4						
	6.2	Contamination	4						

APPENDICES

- APPENDIX I The Brief
- APPENDIX 2 Site Location Plan
- APPENDIX 3 Exploratory Hole Location Plan
- APPENDIX 4 Dynamic Sample and Rotary Borehole Records
- APPENDIX 5 Dynamic Sample and Rotary Photographs
- APPENDIX 6 Trial Pit Records
- APPENDIX 7 Trial Pit Photographs
- APPENDIX 8 Borehole Permeability Test Results
- APPENDIX 9 Trial Pit Soakaway Test Results
- APPENDIX 10 Geotechnical Laboratory Testing Results
- APPENDIX II Contamination Laboratory Testing Results
- APPENDIX 12 Investigation Techniques and General Notes

Aquind Additional Ground Investigation, Drainage Design

I.0 INTRODUCTION

A geotechnical investigation was undertaken by Geotechnics Limited to provide additional information for the Drainage Design at the proposed location of the UK Converter Station and ORS Building (landfall) for the Aquind Interconnector (part of the Aquind UK – France high voltage direct current (HVDC) cable interconnector project).

The investigation was carried out to the instructions of the Engineer, WSP UK Limited, on behalf of the Client, Aquind Limited. This report describes the work undertaken and presents the data obtained.

2.0 OBJECT AND SCOPE OF THE INVESTIGATION

The object of the investigation was to obtain further information on the ground and groundwater conditions relating to the drainage and geotechnical design of the proposed works within the limitations posed by trial hole numbers, locations, depths, methods adopted and the scope of approved in situ and laboratory testing. The Brief for the project is included in Appendix I. The investigation comprised rotary and dynamic sample boreholes, machineexcavated trial pits with in-situ soakaway testing, in situ and laboratory testing and reporting.

In addition, two hand excavated trial pits were undertaken in the south of the site, within Fort Cumberland Car Park to locate a suspected water main pipe.

A Factual Report was also commissioned.

3.0 **PRESENTATION**

A description of the site and a summary of the procedures followed during the investigation process are presented in Sections 4 to 6. The factual data so obtained are presented in Appendices 2 to 11 of this Report. Attention is drawn to the General Notes and Investigation Procedures presented in Appendix 12 to aid an understanding of the procedures followed and

the context in which the report should be read.

4.0 THE SITE

4.1 Location

The site is divided into two areas, Denmead Farm, Broadway Lane to the north of Portsmouth, and Fort Cumberland Car Park, Southsea.

4.1.1 Denmead Farm

The Denmead Farm section of the site is located outside the West and South perimeter of the Lovedean substation, Horndean, Waterlooville. The approximate Ordnance Survey National Grid Reference for the site is SU 671 135 and an extract from the relevant 1:50,000 Scale O.S. Map (Sheet No 196) is included as Appendix 2.

The site is approximately L shaped 'strip' measuring approximately 600m from the northern end to the south eastern end, and 150m at its widest point. The site's topography is generally 'u' shaped, with the south of the site, dipping gently northwards, and the north of the site dipping gently south.

The site is situated within agricultural farmland bounded by hedgerows with the Lovedean substation to the northeast. All fields are grass covered whilst the south eastern field has been ploughed with a crop recently planted. There are no known water courses in the site.

A gravel and dirt topped farmers' lane transects the site and is generally orientated East to West.

4.1.2 Fort Cumberland Car Park

Fort Cumberland Car Park is located approximately 5m the East of Fort Cumberland Road, Portsmouth, Southsea, and 200m to the Northwest of Fraser Range. The approximate Ordnance Survey National Grid Reference for the site is SZ 678 991 and an extract from the relevant 1:50,000 Scale O.S. Map (Sheet No 196) is included in Appendix 2.

January 2021

Project No: PE201667

The site is triangular shaped and measures approximately $80m \times 60m$. The site is gravel topped and undulating with numerous 'potholes' across the site. The site is located within a residential and recreational area, with housing bounding the North, South and West are to the site. The east of the site is bounded by open grass land. At the time of the investigation the site was being used as a carpark. There are no known water courses in the site.

4.3 Site Geology

The British Geological Survey website, http://mapapps.bgs.ac.uk/geologyofbritain/home.html, accessed on the 26/11/2020, shows the Denmead Farm site to be underlain by the Cretaceous Tarrant Chalk Member (Bedrock), which is described as soft white chalk with relatively widely spaced large flint seams. Although not mapped, widespread Quaternary Head deposits are to be found throughout the area. These are described as poorly sorted and poorly stratified, angular rock debris and/or clayey hillwash and soil creep.

The Fort Cumberland Car Park is shown to be underlain by the Paleogene Wittering Formation (Bedrock), which is described as greyish brown laminated clay with interbedded sand and rare glauconitic sand. Quaternary Storm beach deposits (Superficial) described as rounded gravel cobbles and boulders.

5.0 PROCEDURE

5.1 Commissioning

The work was awarded following submission of a tender for work designed by the Engineer for ground investigation of the site in accordance with their requirements (see Appendix I).

5.2 General

The procedures followed in this site investigation are based on BS 5930: 2015 and A1:2020 – Code of Practice for Site Investigations. The soils and rocks encountered have been described in accordance with BS5930:2015 and BS EN ISO 14688-1:2018 and BS EN ISO 14689:2018. The Rotary Borehole, Dynamic Sample Borehole and Trial Pit Records are included in Appendices 4 to 7 and their approximate positions are shown on the Exploratory Hole Location Plan in Appendix 3.

The Exploratory Hole locations were specified by

WSP UK Limited, however Trial Pit 21, 22 and 27 were moved to an alternative location which was agreed with the WSP Engineer. The co-ordinates and levels shown on the Exploratory Hole Records were measured using a Leica GS08 GPS survey device.

At each exploratory hole location, with the exception of the trial pits, an inspection pit was excavated using hand tools to a depth of 1.20m below ground level to check for the presence of underground services. Prior to and on completion of the excavation, the location was scanned using a cable avoidance tool (CAT) and magnetometer to check for the presence of UXO.

5.3 Combined Dynamic Sample and Rotary Boreholes

Four (4 No.), 150mm diameter boreholes (numbered BH40 to BH43) were sunk utilising a combination of dynamic sampling and rotary coring techniques to depths varying between 3.00 and 10.00m below ground level. The work was carried out between the 16th and 20th November 2020. The Dynamic Sample and Rotary Borehole Records are presented in Appendix 4 together with photographs of the locations before and after reinstatement (where available).

The dynamic sample sections of the boreholes were carried out using a compressed air percussive apparatus fitted to the rotary drilling rig which drives lined steel tubes into the ground in 1.00m or 1.50m lengths. Samples are retrieved in the plastic liners. The liners are extruded from the sampler and placed into suitable core boxes.

Rotary coring (96mm diameter), commenced at a depth of between 6.00m and 6.10m below ground level in BH41 and BH42. The drilling equipment used in the rotary sections of the boreholes on this particular contract utilised air-mist as the flushing medium.

The strata descriptions in the open-hole sections of the Borehole Records are the Drilling Foreman's estimate based on sediment and also on chipping returns in the flushing medium placed into disturbed (D) samples. The rate of penetration is also used as an indicator of the type of material being drilled, particularly where there is loss of flush returns. Definitive classification in terms of geology or degree of disturbance is not usually possible from these sources.

Rock cores were extruded horizontally in transparent liners and placed into suitable core boxes.

Photographs of the individual core boxes are included in Appendix 5.

Standard Penetration Tests (SPTs) were undertaken at the depths indicated on the borehole records in accordance with BS EN ISO 22476-3:2005+A1:2011 to obtain a measure of the engineering properties of the proved strata.

Groundwater observations are included on the Borehole Records where appropriate. It should be noted that the addition of water to the borehole as part of the drilling process may have masked the presence of groundwater in the borehole. Where water was added it has been noted on the Borehole Records.

On completion, all the boreholes were backfilled with bentonite.

5.4 Trial Pits

Eight (8 No.) Machine Excavated Trial Pits (numbered TP21 to TP28) were excavated to depths varying between 0.5m and 2.5m below ground level using a 5-Tonne excavator between the 16^{th} and 20^{th} November 2020. This work was supervised on site by a geotechnical engineer.

Two (2 No) Hand Excavated Trial Pits (numbered HP01 to HP02) were excavated to depths between 1.00m and 1.10m below ground using a 2 Tonne miniexcavator and insulated hand tools on the 19th of November 2020.

The profiles of strata or other features were recorded proceeded as excavation and measurements ground level taken from Representative samples were taken, where appropriate, for laboratory examination and analysis and in addition, Environmental samples (ES) were recovered at the depths indicated on the Trial Pit Records. Samples were taken directly from excavated materials deposited at the surface. Groundwater observations and trench stability notes are included on the Trial Pit Records. Photographs of the pits are presented in Appendix 7 together with photographs of the locations before and after reinstatement (where available).

5.5 In Situ Permeability Tests

In Situ Falling Head Permeability tests were undertaken in all Boreholes at depths specified by the WSP engineer during a pause in the drilling operations in accordance with BS EN ISO 22282-2:2012 at the following depth ranges:

Exploratory	Test Section
Hole	(m below ground level)
BH40	1.20m to 3.20m
BH41	4.50m to 5.50m
BH41	6.00m to 7.00m
BH42	3.20m to 4.20m
BH42	4.50m to 6.00m
BH43	2.60 to 2.65m

The test locations were specified by the Engineer.

An estimate only of the permeability has been provided as the boreholes were dry throughout the investigation. The test section is therefore above the groundwater level such that the test section is not fully saturated.

The test data is presented in Appendix 8 with two estimates given based firstly on an assumed groundwater depth of 15m bgl, and secondly assuming groundwater at the base of the borehole test. These examples are provided to allow a comparison of possible situations.

5.6 Soakaway Tests

Eight (8 No.) soakaway tests were carried out in all Trial Pits, TP2I and TP28 at the locations marked on the Exploratory Hole Location Plan (see Appendix 3) to depths of between 0.30 and 2.00m below ground level in accordance with the method given in *BRE Digest 365 "Soakaway Design", 2016.* Following the test procedures in the Digest the tests were repeated three times at each location. At TP28, due to ground collapse and unsafe conditions, only two repeated tests were undertaken. The results of the tests are presented in Appendix 9.

5.7 Explosive Ordnance Clearance

Historical information provided by the Client highlighted the potential risk of the presence of unexploded bombs/ordnance beneath the site. In order to reduce the risk of them being found during drilling or excavation, each exploratory hole location was cleared by a Specialist Company, EOD Contracts Limited before commencement of the ground investigation operations.

The clearance works for the borehole was carried out by an Explosive Ordnance Detection (EOD) Engineer working with magnetometer.

LABORATORY TESTING 6.0

6. Geotechnical

The laboratory testing schedule was specified by the Engineer in order to relate to the proposed development. The tests were carried out in MATTest Limited's UKAS accredited Laboratory (Testing No. 2643) and were undertaken in accordance with the appropriate Standards as indicated below and on the Laboratory Test Certificate in Appendix 10. Any descriptions, opinions and interpretations are outside the scope of UKAS accreditation.

The tests undertaken can be summarised as follows:

BS 1377:1990 Prepared by: Test No. **Test Description** Part 2 3.2 10 No. Moisture Content Determination 4.3 & 5.3 7 No. Liquid and Plastic Limit Anne Simpson Determination **Principal Engineer** 8.3 13 No. Particle Density Determination. Reviewed by: 9.4 10 No. Mechanical Analysis -Sedimentation Part 4 Dry Density/Moisture Content 3.4 5 No. Hannah Dwane relationship determination. Bsc (Hons), FGS Compaction Test - British Standard (2.5 kg Hammer) 5.5 2 No. **Moisture Condition Value** Calibration Tests. Part 6 2 No. Consolidation Properties in a 3.5 Hydraulic Cell - one way vertical drainage with rigid load Part 7 4.4.3 2 No. Shear Strength by Direct Shear -Small Sheabox Test 9 I No. Shear Strength Measurement -100mm diameter (Multi-Stage) Quick Undrained Triaxial Compression Test.

The following testing was carried out at the laboratories of DETS (UKAS Accredited Laboratory, Number 2139):

BRE Special Digest | Suite

2 No. Suites comprising:-Soluble Sulphate pН

The results of the tests are presented in Appendix 10.

6.2 Contamination

Selected samples of soil were tested at the laboratories of Eurofins Chemtest for a number of determinands in order to check on potential site contamination. The determinands specified by the Engineer and are detailed on the results sheets in Appendix 11 together with the test result as well as the test method, accreditation and detection limit.

BSc (Hons) MSc(Eng), CEng, IOM3, FGS

Regional Operations Manager

APPENDIX I

The Brief

MEMO

то	Aquind Ltd	FROM	Joshua Kaufmann
DATE	28 July 2020	CONFIDENTIALITY	Confidential
SUBJECT	Aquind Additional Ground Investigation S ORS Building (Phase 3)	pecification for Drainage	Design at the Converter Station and

INTRODUCTION

At the time of the original 2018 ground investigation the location of detention/retention ponds and drainage design for the project were unknown and so could not be investigated. Further to receipt of comments from key stakeholders and a preliminary drainage design it is considered that additional ground investigation is required to confirm/prove the drainage design assumptions.

This specification is to provide a preliminary scope of works for additional ground investigation, including insitu testing and sampling to inform the drainage design for the UK Converter Station and ORS Building (landfall) for the Aquind Interconnector. This scope of works aims to outline a ground investigation that will prove ground conditions at key locations (ponds, swales, soakaways etc) and provide information on ground permeability and porosity to allow drainage design in addition to other geotechnical testing.

SCHEDULE 2: DRAINAGE DESIGN

The following assumptions have been made during the preparation of the Schedule 2 for the drainage design, these should be reviewed, and revisions made as necessary.

Ground Investigation to be undertaken in accordance with UK Specification for Ground Investigation (SISG).

All in-situ and laboratory testing are to be confirmed by the Investigation Supervisor.

The ground investigation has been scoped with prior site knowledge from Phase 1 and 2 ground investigations. Positions shown on preliminary plans in Appendix A are approximate only and may require adjustment during the site works.

Abbreviations

- BH = Borehole
- TP = Trial pit
- CP = Cable Percussion
- Rot = Rotary Core
- WS = Window Sample

Note 1 - Please note that the scheduled exploratory hole depths and installation details are provisional and are to be confirmed by the Investigation Supervisor.

Note 2 - See drawing(s) in Appendix A for coordinates

Note 3 - Where UXO risks have been identified, surface clearance and/or a UXO engineer will be on site.

For provisional exploratory hole locations see location plan, Appendix A, locations to be confirmed on site. Scheduled exploratory hole depths are also provisional and are to be confirmed by the investigating supervisor. Boreholes – combined cable percussive and rotary, or equivalent, boring to log ground conditions, obtain samples and undertake in-suit testing.

Trial pits – mechanically excavated trial pits for logging ground conditions, carrying out in situ tests and obtaining samples for laboratory testing.

CONVERTER STATION AND ACCESS TRACK

Table 1 Schedule 2 Converter Station and Access Track

HOLE		SCHEDULED			
NUMBER	UXO SEARCH	DEPTH (M)	PURPOSE	TESTING	COMMENT
BH40	Surface Scan	5m	Prove ground conditions to allow design of the infiltration pond and the	Every metre alternate SPT and Bulk sample (granular)	As directed by Investigation
BH41 – BH42	Surface Scan	10m	converter station gravel infiltration zones. To provide data on permeability, porosity as well as soil strength parameters. Waste acceptance criteria testing required (Suite H).	or OS-T/W U100 (cohesive), sampling to occur before the metre interval if change in strata. Testing and sampling is to be to CIRIA C574 and BS 5930:2015. Environmental testing to be specified in the detailed specification. Two packer permeability tests per a hole, testing to be to CIRIA C574, BS EN ISO 22282 and BS 5930:2015.	Supervisor. A minimum of three suitable samples will need to be collected from BH41 and BH42 for laboratory permeability and porosity testing. Locations within SPZ1.
TP21-TP27	Surface Scan	Assume 1.75m (1.0- 2.5m) depth (machine dug).	Prove ground conditions to allow design of the Soakaways, infiltration pond and swale infiltration Infiltration testing providing permeability results. In-situ and laboratory testing providing further porosity and soil strength parameters. Waste acceptance criteria testing required (Suite H).	One soakaway per trial pit, testing to be to BRE 365. Testing and sampling is to be to CIRIA C574 and BS 5930:2015. Environmental testing to be specified in the detailed specification. One large bulk and one small tub every metre or change of strata.	As directed by Investigation Supervisor. Locations within SPZ1. Depths may vary dependent on location, to be confirmed by supervising engineer.

ORS BUILDING

Table 2 Schedule 2 ORS Building

HOLE		SCHEDULED			
NUMBER	UXO SEARCH	DEPTH (M)	PURPOSE	TESTING	COMMENT
ВН44	Surface Scan + UXO Engineer	5m	Prove ground conditions to allow design of the ORS Building infiltration drainage. To provide data on permeability, porosity as well as soil strength parameters. Ground/groundwater aggressivity testing for potential concrete structure (Suite C (Brownfield site – pyrite absent)). Waste acceptance criteria testing required (Suite H).	Every metre alternate SPT and Bulk sample (granular) or OS-T/W U100 (cohesive), sampling to occur before the metre interval if change in strata. Testing and sampling is to be to BS 5930:2015. Environmental testing to be specified in the detailed specification. Two falling head permeability tests per a hole (3 runs per a test), testing to be to BS EN ISO 22282 and BS 5930:2015.	As directed by Investigation Supervisor.
ТР28	Surface Scan + UXO Engineer	Assume 2.0m depth (machine dug).	Prove ground conditions to allow design of the ORS Building infiltration drainage Infiltration testing providing permeability results. In-situ and laboratory testing providing further porosity and soil strength parameters. Ground/groundwater aggressivity testing for potential concrete structure (Suite C (Brownfield site – pyrite absent)). Waste acceptance criteria testing required (Suite H).	One soakaway per trial pit, testing to be to BRE 365. Testing and sampling is to be to BS 5930:2015. Environmental testing to be specified in the detailed specification. One large bulk and one small tub every metre or change of strata.	As directed by Investigation Supervisor.

OTHER REQUIREMENTS

PERSONNEL

WSP Engineer (Joshua Kaufmann or similar experience) to represent client and undertake role of Investigation Supervisor. Requirements for drilling crew, engineers and support staff to be confirmed by the Contractor.

HEALTH AND SAFETY

The Contractor is to produce suitable and approved health and safety documents including risk registers, safety controls and RAMS, these are to be reviewed by WSP. Detail of health and safety requirements will be included within the detailed specification

METHODOLOGIES

Suitable methodologies will need to be agreed with the local landowners and relevant statutory bodies. Drilling methodologies are to be the same as the previous ground investigation phase methodologies which were agreed with Portsmouth Water and available in Appendix B. The water used for variable head testing, packer testing and infiltration testing is to be potable water sourced from a nearby Portsmouth Water standpipe. Confirmation and review of the proposed methodologies will need to be completed by Portsmouth Water.

STATUTORY BODIES CONSULTATION AND PERMITS

All works will need to be permitted by local landowners. Works within the SPZ1 will require consultation and agreement with Portsmouth Water. Portsmouth City Council will require consultations for any works within the city of Portsmouth.

APPENDIX A

Figure 1 Converter Station Infiltration Testing Plan

Figure 2 ORS Building Infiltration Testing Plan

APPENDIX B

<u>UK – France Interconnector Ground Investigation</u>

Drilling Methodologies Proposed. (Revision 1 – additions in italics)

Geotechnics Ltd have been employed by WSP on behalf of Aquind Ltd to carry out a ground investigation to determine the ground condition *at two potential converter station locations as well as* along the proposed cable route from Lovedean Sub- station south to the coast at Eastney. The project has been split into 4 packages of work –

Package 1, Package 1A, Package 2, Package 3

Areas of the site are known to be underlain by a principle aquifer – Chalk and has also been designated as a Source Protection Zones (SPZ1s).

As part of the investigation Geotechnics have been asked to drill rotary boreholes to depths up to 30m below ground level.

All drilling carried out by Geotechnics Ltd will be undertaken in accordance with the Environment Agency guidance as outlined in

- "Technical Report P5-065/TR" in "Technical aspects of site investigation" Volume 2, Environment Agency 2002
- Guidance on the design and installation of groundwater quality monitoring points
- British Drilling Association Guidelines

Aquifer protection measures, including telescopic drilling techniques (clean drilling techniques) will be employed at <u>all</u> boreholes along the whole scheme including the proposed converter station locations close the existing electrical substation.

Telescopic drilling is a technique used to minimise cross-contamination in layered aquifer systems. In brief, a borehole and temporary casing is advanced until a low permeability layer is encountered. The temporary casing is sealed into this layer and a second, narrower string of temporary casing is then advanced within it to permit drilling to continue. The technique will require the borehole to be started at a larger diameter than conventional drilling and may also require the use of additional lengths of casing.

Our proposed methodology based on the requirements of the investigation (information required, depths stipulated etc) the expected geology, indications from previous reports, work that we have carried out in the area previously and British Geological Survey borehole records, was to bore using 150mm diameter drilling tools and 150mm diameter casing to start each borehole.

Casing would be advanced as boring progresses, until a non permeable layer is encountered and the 150mm casing then effectively sealed into this layer meaning potential contaminated ground *and/or perched groundwater and any lenses of potentially contaminated water* above is sealed off from those stratas below. There would therefore be no route available for contaminations to seep downwards.

A second smaller diameter string of casing (nominal 140mm) will then be installed to case off any additional permeable layers *and/or perched groundwater and any lenses of potentially*

contaminated water prior to the rotary coring beginning (once competent material is encountered – this could be before the Chalk is reached as stiff clays are anticipated).

The addition of bentonite seals can be installed at the base of each string of casing – this entails pulling back the casing by 1.0m then adding bentonite pellets to form a minimum 1.0m seal. The bentonite pellets will be left to cure for a minimum of 2 hours before drilling recommences. *If the borehole is dry at the point of adding the bentonite seals then potable water will be added to the borehole to enable the bentonite pellets to cure. The data sheet for the bentonite pellets that will be used (Mikolit 300) is at the end of this document; the delayed swelling time for these pellets is ~15mins therefore waiting 2 hours for the bentonite to swell and cure and create a low permeability seal is deemed more than sufficient.*

We anticipate encountering stiff impermeable clays for the majority of the borehole so the addition of bentonite seals may not be of any additional merit – however the geology will be closely monitored by our rig supervisors and drillers and the necessity of the bentonite seals assessed at a borehole by borehole / strata by strata basis.

The main risk is following completion of boring when casing is removed. However, we would be backfilling boreholes with bentonite pellets which will fully seal the boreholes. This is added as casing is removed so again, there is no time at which contaminated ground *or perched groundwater lenses* could "fall" down the borehole.

All the boreholes will be cased (*telescopically*) as detailed above as the borehole is progressed; sampling and drilling will be carried out using a combination of dynamic sampling (window sampling) through the softer overburden then switching to rotary coring utilising air mist as flush – direct circulation.

The dynamic sampling section of the borehole is achieved by percussive sampling – dropping weight onto sample barrel repeatedly to advance it through the ground and return continuous meter long samples – no flush is required whilst this technique is carried out.

Once rotary coring is being used flush will be added to the drill string by direct circulation to the base of the hole and pushed back up to the surface inside the temporary casing. The flush is used to lubricate and cool the bit as drilling progresses as well as to lift the drill cuttings to the surface where they will be contained within a bunded area at ground level. The water added to the borehole will be potable water.

Should poor core recovery be encountered then shorter run lengths shall first be attempted if this does not improve the core recover then the option to switch to water flush will be considered. Water flush can be less destructive to the core in some geologies and help improve recovery, it can however wash away very weak rock. Consultation will be had between the lead driller, rig supervisor and investigation supervisor prior to switching the flush.

The drilling techniques described above result in continuous samples of the soils / rock being recovered with minimal excess spoil. All samples recovered will be logged and sub sampled by the onsite engineers/geologists and samples utilised for laboratory testing off site.

Proposed Plant and Equipment

Rig1 – Commaccio 405 – tracked Rig2 – Klemm UniMog – Truck Mounted

Drilling Equipment – Rotary

- Rotary drilling rigs Fitted with compliant guarding weight 14 Tonnes
- 1 No. compressor
- Water bowser
- 100 mm diameter bauer pipework in 3 m and 6 m lengths
- 50 mm fire hoses
- 150 mm nominal diameter temporary casing in 2 m lengths
- 140mm nominal diameter temporary casing in 2m lengths
- Tricone bits, tungsten bits, diamond bits

- Drill rods
- Hand tools (stilsons, chains, hammers, shovels etc.)

Unexpected Ground Conditions

The nature of ground investigations is to gain more information on the ground conditions – geology, strength and groundwater, to that effect unexpected ground conditions may well be encountered.

Examples of these could be karstic features which are sometimes found within chalk.

To mitigate risks associated with these features any desk study or mapping information of local karstic features will be shared with Geotechnics and boreholes set out in areas to avoid any known features.

The rigs will be set up in such a way so that their load is spread over a larger footprint by way of using wooden sleepers under their outriggers thereby reducing their ground pressure at surface.

Lead drillers will be briefed on the fact that these features may be present in the area. Lead drillers will take special note of the drilling speed and in particular the amount of flush being used and any flush loss both of which can be indicators that a void could be present or close. Additional indicators that could be evidence of a karstic feature are encountering granular fill material within the Chalk strata and silts and sands in situ within the Chalk.

Should any one of these features be encountered in any of the boreholes – works will stop and the EA and Portsmouth *Water* informed immediately. Instructions will then be sought from the Investigation Supervisor WSP.

If instructed and ground conditions permitting drilling will continue to try to identify the depth of the feature/void – this will likely involve adding rods to the drill string and lowering these down the borehole until the base of the void is identified.

Additional casing will be required to advance the borehole past the void.

On terminating the borehole we would propose installing a mechanical packer at the top of the feature / void to effectively plug the borehole. From here the borehole will then be backfilled with bentonite pellets as the casing strings are removed until the borehole is completely backfilled up to surface.

For all boreholes located within the SPZ1 Portsmouth Water will be contacted to inform them of the following:-

- Prior to starting Boreholes
- Immediately of any loss of drilling flush
- Encountering any unexpected fill/geology
- Encountering any voids/karstic features
- Backfilling of the boreholes.
- Agreement of any installation details.

Ground Water Installations

We understand that the client may require some standpipes in some *boreholes (one at each converter station location)*, which again creates a possible pathway/route for contamination to move between shallow and deep zones. We would seal off the deeper zones from shallower response zones using a minimum of 2m bentonite. Also ensuring that response zones are not too long and thereby linking layered aquifers and or aquifers and made ground/contaminated stratas.

On the instruction of Portsmouth Water, a minimum of 2.0m from ground level of plain installation pipe will be grouted into the borehole with the plain pipe extending a reasonable depth to reduce the risks associated with preferential pathways.

Dual installations can be installed safely within boreholes, however to add an additional layer of safety only single installations will be scheduled in any of the boreholes along this scheme. All installations will be cemented in at ground level and fitted with lockable covers either flush or upstanding – depending on location and investigation supervisors / landowners instructions.

Mikolit[®] is a sealing pellet which requires no mixing or pumping. It is a patented clay based pellet with a very low dust content.

Mikolit 300 is a medium grade bentonite pellet suitable for most applications. It has a **swelling capacity of 50-70%.**

All Mikolit pellets have excellent sinking qualities and are dust free and easy to use.

Pellet Size:	± 8mm (D); 7-12mm(L)
Processing Time:	None
Sinking Speed In Water:	21m/min
Saturated Density:	~1.80 t/m³
Bulk Density:	~1.10 t/m³
Delayed Swelling Time:	~ 15 minutes
Swelling Capacity:	50 - 70%
Swelling Pressure:	9 kN/m²
Permeability:	<10 ⁻¹¹ m/s

SHELF LIFE: Unlimited if unopened & kept in a dry location

PACKAGING: 25kg waterproof bags, 40 or 56 bags per pallet.

QUAN	QUANTITY NEEDED (KG/M) Borehole Diamater (mm)										
00	100	125	150	200	250	300	400	500	600		
0	9	13	19	34	54	77	137	215	309		
50	6	11	17	32	51	75	135	212	307		
100		5	11	26	45	69	129	206	300		
125			6	21	40	64	124	201	295		
160				12	32	55	115	193	287		
200					19	43	103	180	175		
250						24	84	161	255		
315							52	129	224		
400								77	172		
500									94		

Applications

- Borehole sealing
- Isolating instrumentation and sampling zones

Features

- ∼ 50-70% swelling capacity
- Pre-formed pellet
- Delayed swelling
- No grout loss
- No grouting/mixing machines required
- Simple & easy to use
- Environmentally friendly
- Low permeability
- Dust free

Specifications may change without prior notice

Marton Geotechnical Services Ltd www.mgs.co.uk e info@mgs.co.uk t +44(0)1359 271167 f +44(0)1359 271168 Geotechnical Centre, Rougham Industrial Estate, Rougham, Bury St Edmunds, Suffolk IP30 9ND, England

APPENDIX 2

Site Location Plan

© Crown Copyright Reserved, OS License Number: 100020449

Ground Investigation at Aquind Drainage Design Additional GI for Aquind Limited

© Crown Copyright Reserved, OS License Number: 100020449

Ground Investigation at Aquind Drainage Design Additional GI for Aquind Limited

APPENDIX 3

Exploratory Hole Location Plan

APPENDIX 4

Dynamic Sample and Rotary Borehole Records

DATA SHEET - Symbols and Abbreviations used on Records

Sample	e Types	Groundwater		Strata, Continued			
В	Bulk disturbed sample	Water Strike	∇	Mudstone			
BLK	Block sample	Depth Water Rose To	V				
С	Core sample		<u> </u>		*****		
D	Small disturbed sample (tub/jar)	Instrumentation		Siltstone	x x x x x x x x x x x x x x x x x x x		
Е	Environmental test sample		22	Metamorphic Rock	* * * * *		
ES	Environmental soil sample	Seal	12	Fine Grained	~~~~~		
EW	Environmental water sample			Medium Grained			
G	Gas sample		1		\sim		
L	Liner sample	Filter		Coarse Grained	$\sim \sim$		
LB	Large bulk disturbed sample		11		\sim		
Р	Piston sample (PF - failed P sample)		- - -	Igneous Rock			
TW	Thin walled push in sample	C 1	22	Fine Grained			
U	Open Tube - 102mm diameter with blows to take sample. (UF - failed U sample)	Seal		Medium Grained	+ + + + + + + + + + + + + + + + + + +		
UT	Thin wall open drive tube sampler - 102mm diameter	Strata	Legend	Coarse Grained			
	with blows to take sample. (UTF - failed UT sample)	Made Ground Granular		Backfill Materials			
V	Vial sample				×.		
W	Water sample	Made Ground Cohesive		Arisings	×.		
#	Sample Not Recovered				\approx		
Insitu 🗌	Festing / Properties	Topsoil		Bentonite Seal			
CBRP	CBR using TRL probe				,		
CHP	Constant Head Permeability Test	Cobbles and Boulders	°.°.	Concrete	•		
COND	Electrical conductivity		200	Concrete	•		
тс	Thermal Conductivity	Gravel			<u></u>		
TR	Thermal Resistivity		* • · · · ·	Fine Gravel Filter			
HV	Strength from Hand Vane	Sand					
	CBR Test Density Test	Sanu					
IRES	Resistivity Test			General Fill			
MEX	CBR using Mexecone	Silt	× ^ >				
	Probe Test		× * *	Gravel Filter			
PID	(ppm)		× Û × Ĵ	Graver meer	: -		
PKR	Packer Permeability Test	Clay			1		
PLT	Plate Load Test			Grout	1		
PP	Strength from Pocket Penetrometer						
Temp	Temperature	Peat	stile -		D D D D		
VHP	Variable Head Permeability Test		53472 13472	Sand Filter			
VN	Strength from Insitu Vane	Nata: Campasita asil tum		- ,			
W%	Water content	by combined symbols	es snown	Tarmacadam	Ĺ		
undrain	ed triaxial testing)	Challe					
S	Standard Penetration Test	CIIdik		Rotary Core			
C	(SPT) SPT with cone			RQD Rock Quality De	esignation		
N	SPT Result	Limestone		(% of intact core FRACTURE INDEX	e >100mm)		
-/-	Blows/penetration (mm) after seating drive			Fractures/metre FRACTURE Maximum			
-*/- (mm)	Total blows/penetration	Sandstone		SPACING (m) Minimum NI Non-intact (core		
()	Extrapolated value			NK No core red AZCL Assumed zo	covery one of core		
、 /		Coal		loss			
		CUal		(where core recovery is unknown assumed to be at the base of the	wn it is e run)		

G

BOREHOLE RECORD - Dynamic Sampler

Project AQUIND DRAINAGE DESIGN ADDITIONAL GI Engineer

WSP UK LIMITED

Borehole Project No

BH40 PE201667

Client	Client AQUIND LIMITED Ground Level 67.18 m OD																
Sampl	ing	Comula	Depth	Prope	rties		Strata Scale 1:50								50		
Depth		Sample Type	Cased & (to Water)	kPa	w %	SPT N	Descript	ion							Depth	Legend	Level m OD
0.00-	0.20	B					Soft d	lark bi	rown slig	htly s	andy C	LAY.			G.L.		67.18
0.20		ES D					Firm 1 CLAY.	reddisl Gravel	h brown s l is suba	lightl ngular	y sand to su	y sligh brounde	tly gra d fine	velly to			
0.50 0.60-	- 1.00	ES B					Coarse	e flint	t.				-11 OT	/	0.60	······	66.58
1.00		- D - ES					with a angula	a low o ar to s	cobble co subrounde	sandy ntent. d fine	Grave	ly grav l (and arse fl	cobbles) are		· · · · · ·	
1.20-	- 1.65	D	Nil (Dry)			S12								•	-	······································	
1.20	2.20	в		TR=	100%		Struct	ureles	SS CHALK.	Recov	ered a	s cream	slight	ly	1.50		65.68
1.80		D					white	chalk	and flin	t (Gra	de Dm)	•	w densi	cy	- - 		
2.20-	2.65	D	Nil			S16								•	-		
2.20	3.20	- - D	(Dry)	TR=	100%									•	-		
															-		
		-													3 20		63 08
		-							En	d of B	orehol	9		•	- 5.20		03.90
		-												•	-		
		-													-		
		-													-		
		F													-		
		F													-		
		F													-		
		Ē													-		
		F												· · ·	-		
		-												•	- 		
		-													-		
		-													-		
		-													-		
		-												•	-		
		Ę													-		
														· ·	-		
		-													- 		
		-													-		
		F												•	-		
		Ę													-		
		-													 - -		
		Ē												·	-		
		-													-		
		-													-		
Boring	Holo	·	1	!		Progre	SS Denth)epth to			Grour		r	in	Denth	Remai	ks on
Depth	Dia	Increat	Techniqu	e -	Crew	of Hole	Cased	Water	Date	Time	Struck	Cased	Rose to	Mins	Sealed	Ground	dwater
3.20	0.12	Dynamic	Sample	er	CJ	3.20	Nil	Dry	19/11/20	18:00						not enco during d	untered rilling.
																	-
Remar	ks 🔐	Inspect	ion pit	hand of Permo	excava	ted to	1.20m de	epth an	nd no ser ut during	vices	were fo	ound.	of 3 20	m. Bore		jedby I	IL
Symbols a	and	collaps Backfil	ed duri	ing the	secon n base	d test of hol	and the	borehonite a	ole was baseal up to	ackfil o 1.00	led. m, ari:	sings u	p to gr	ound le	evel. Figu	re 1	CAS of 1
explained	ons are on the nying															<u> </u>	0
key sheet All dimension	sions														Ø	anaý	MIGS
are in met	All dimensions are in metres. Logged in accordance with BS5930:2015																
BOREHOLE RECORD - Dynamic Sampler and Rotary

Project AQUIND DRAINAGE DESIGN ADDITIONAL GI Engineer

AQUIND LIMITED

Client

WSP UK LIMITED

Borehole Project No

Ground Level 90.27

BH41 PE201667

m OD

Sampling		- Frank	Proper	ties		Strata									Scale 1:	50
Depth	Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Description								Depth	Legend	Level m OD
0.20- 0.30	B ES					TOPSOIL: clay. Sar to subrour	Brown nd is nded f	n slig fine f fine to	htly s to coa o coar	andy si rse. (se cher	lightly Fravel	gravel is angu	ly lar	G.L. 0.30		90.27 89.97
0.50- 0.60	- ES					Firm reddi angular to	sh br subr	rown g rounded	ravell d fine	y CLAY to coa	. Grav arse ch	el is ert.		-		
1.00- 1.20 1.00- 1.20 1.20- 1.65 1.20- 1.40 1.40- 2.00	B - ES - D - ES - B -	Nil (Dry)			s13	Structure] slightly o Gravel is stained or subrounded coarse che	ess (ravel very ange, l chal	CHALK. Lly SII weak, , black lk and Grade 1	Reco LT and low d k spec angul Dm).	vered a slight ensity kled an ar to s	as crea cly gra occasi ngular subangu	m and b velly C onally to lar find	rown LAY. e to	1.00		89.27 89.07
2.00- 2.20	- - D					Structurel gravelly s	ess C	CHALK.	Reco el is	vered a	as crea	m sligh w densi	tly tv	-		
2.20- 4.50 2.20- 2.65	- В - D -	Nil (Dry)			S45	occasional angular to subangular	ly st subr fine	tained rounded to co	orang d chal oarse	e, rare k and a chert	e black angular Grade	speckle to Dm).	es	-		
2.80- 3.00	- - D													-		
3.20- 3.80 3.20- 3.65	D D	3.20			S14									-		
3.20- 3.80	- - -	(Dry)											• • •	-		
	- - -													-		
4.50- 5.50	в					Structurel gravelly S	ess C	CHALK. Grave	Reco el is	vered a	as crea ak, lo	m sligh w densi	tly ty	4.50		85.77
	- - 					occasional angular to subangular	ly st subr fine	tained rounded to co	orang d chal oarse	e, rare k and a chert	e black angular (Grade	speckle to Dm).	es	-		
5.50- 5.95	D	4.50 (Dry)			s19									-		
6.00-10.00	- - - в												•	6.00		84.27
Core Run/Depth (Core Dia/Time)	n-Depth Cased	TCR/SCR	Length Max/Min	RQD %		Continued by General	Rotary	/ technic	ques	Detail				-		
6.00- 7.00	- 6.00 (Dry)	100 0		0		Structure Recovered sandy grav	.ess C as sl relly	CHALK. Lightly SILT.	У					-		
6.50	- -	D 66		0	Ŧ	Gravel is density, w	weak, hite	, low with					•	-		
7.00- 7.45	(Dry) 6.00	0 D		Ū	S16	speckling	(Grad	ie Dm)	•					_		
7.50	(Dry)	D												-		
	-												•	-		
													•	-		
8.50-10.00	- 6.00	60		0	-								•	-		
8.50- 8.50 9.00	(Dry)	0 D D											•	-		
	Ē													-		
	F													-		
													•	10.00		00.05
10.00-10.45 Boring		D			s31 Progra	End o	of Bor	rehole		Groue	dwate	r		10.00		80.27
Depth Hole		Technique	e	Crew	Depth of Hole	Depth Depth Cased Wate	to r C	Date	Time	Depth Struck	Depth	Rose to	in Mins	Depth Sealed	Remar	ks on water
1.20 0.30 10.00 0.14	Inspect Dynamic	ion Pit Sample	er and	CJ CJ	G.L. 7.00	6.00 Dr	18/ y 18/	/11/20 /11/20	08:00 18:00						Groundwat not encou	er was intered
	Rotary	-			7.00 10.00	6.00 6.8 6.00 Dr	30 19/ y 19/	/11/20 /11/20	08:00 18:00						during di	illing.
Remarks 🔚	Inspect	ion pit	hand e	xcava	ted to	1.20m depth	and n	no ser	vices	were fo	ound.		0m ard	Loga	ed by J	w
Symbols and abbreviations are explained on the	7.00m. Dynamic Backfil	sample l detai	recove ls from	ery: 1 h base	.20-2.2 of hol	Om,100%; 2.2 e: bentonite	0-3.2 seal	20m,10 Lupto	0%; 3. o 1.00	80-4.50 m, ari:)m,100% sings u	; 4.50-1 p to gro	5.50m,1 ound le	Chec 00%. ^{Figur} vel.	ked by E e 1	AS of 2 9/02/2021
accompanying key sheet.														L (PE	<u></u> Decan	പ്ട്ര
All dimensions are in metres.	Logged in	accordance	with BS59	30:2015										<u> </u>	7	

BOREHOLE RECORD - Dynamic Sampler and Rotary

Project AQUIND DRAINAGE DESIGN ADDITIONAL GI Engineer

WSP UK LIMITED

Borehole Project No

BH41 PE201667

Client	AQUIND	LIMIT	ED											Ground	Level 90	.27 M	OD
Drilling	g	Donth	Prope	rties/Sa	mpling)	Strata				Decerie	4				Scale 1	:50
Core Ru (Core D	in/Depth ia/Time) (Cased & (to Water)	TCR/SCR%	Length Max/Min	RQD %	SPT N	Descrip General	tion			Descrip Detail	tion			Depth	Legend	Level m OD
		6 00													- 10 00		80 27
	F	(Dry)													10.00		00.27
	F	-													-		
	E														-		
	F	_															
	F														-		
	E	_													-		
	Ę														-		
	F														-		
	E														-		
	F														-		
	F	-													-		
	E																
	F	-													-		
	F														-		
	E	-													_		
	F														-		
	Ē	_															
	E														_		
	F	-													-		
	E														-		
	F	_															
	F														-		
	E	_													-		
	Ę														-		
	F														-		
	E	_													-		
	F														-		
	F	-													-		
	E														-		
	F	_													-		
	F														-		
	E	-													-		
	F														-		
	F	_													-		
	E														-		
	F	-												•	-		
	F														-		
	E	_															
	F														-		
	E														-		
	F														_		
	F													•	-		
Drillin	~	_				Drogr					Crown	durata	-		_		
Denth	Hole	-	Technique	ć	Crew	Depth	Depth	Depth to	Date	Time	Depth	Depth	Rose to	in	Depth	Remai	ks on
Deptil	Dia		rechnique		0.011	of Hole	Cased	Water	Dute		Struck	Cased	11050 10	Mins	Sealed	Ground	dwater
Roma	rks 🗖																
Reilla	AGS														Logg Chec	ed by 3 ked by 1	JW EAS
Symbols abbreviati	and ions are														Figur	e 2	2 of 2 09/02/2021
explained accompar	l on the nying														_		_9
key sheet	t. sions														œ	maj	MB
are in me	tres. L	ogged in a	accordance	with BS59	30:2015												

BOREHOLE RECORD - Dynamic Sampler and Rotary

Project AQUIND DRAINAGE DESIGN ADDITIONAL GI Engineer

WSP UK LIMITED

Borehole Project No

BH42 PE201667

Client	AQUIN	D LIMII	ED											Ground	Level 86	5.13 m (DD
Sampl	ing		Depth	Proper	ties		Strata	3								Scale 1:	50
Depth		Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descrip	otion							Depth	Legend	Level m OD
0.20- 0.20- 0.50- 0.50-	0.30 0.30 0.60 0.60	 					TOPSO clay. to su Firm angul	OIL: Bi Sand brounde orangis ar to s	rown slig is fine ed fine t sh brown subrounde	htly s to coa o coar gravel d fine	andy sl rse. (se cher ly CLAX to coa	lightly Gravel ct. (. Gra	gravel is angu vel is ert.	ly lar /	G.L.		86.13 85.83
1.00- 1.00- 1.20- 1.48- 1.48-	1.20 4.20 1.20 1.65 2.20 1.60	- B - D - ES - D - B - D	Nil (Dry)			s10	Struc Grave	0.70m, tureles ded oran	Very gra ss CHALK. igish bro	Reco wn sli low d	vered a ghtly o ensity	as crea gravell , cream	m frequ y CLAY.	ently	1.48		84.65
2.20- 2.50- 2.70-	2.65 2.70 4.00	- D - D - D - B - B	Nil (Dry)			S17	to su to co Betwe clay. From	brounde barse ch en 1.48 2.30m,	ed chalk hert (Gra 3 and 1.9 Frequent	and an de Dm) 5m, Su black	gular (rface (speck]	to subr stained Ling.	ounded	fine range			
3.20-	3.65	- D 	3.20 (Dry)			s12											
4.20- 4.30- 4.50- 4.50- 4.50-	5.90 5.10 5.10 5.10 5.10 5.10	- B - UT - B - D - UT37	0.60														
5.10-	5.55		4.50 (Dry)			529	Potwo	oon 6 10) and 6 6	0m No	Pagoy						
6.10- 6.10-	7.00	- B - D	6.10 (Dry)			s15	Detwe	en 0.10		UII, NO	Recove	er y .			— I I		
Core Ru (Core Di	n/Depth a/Time)	Depth Cased	TCR/SCR / Type	Length Max/Min	RQD %		Continu Genera	ued by Ro I	otary techni	ques	Detail				ļ		
6.10- (96 7.30-	7.50 mm) 7.95	6.10 - (Dry)	71 11 C		11		Struc Recov rarel	tureles vered as	s CHALK. cream v hed orang	ery e					7.00		79.13
7.50- (96 7.50-	9.00 mm) 8.60	6.10 (Dry)	47 0 B		0	-	frequ very Grave densi subar chalk coars	clayey clayey al is ve ty, cre ngular t and an se chert	GRAVEL. GRAVEL. ery weak, eam, co subrou ngular fi c (Grade	black low nded ne to Dc).							
8.60-	8.80	-	В												9.00		77.13
9.00-	9.45	6.10 (Dry)	D			s19		End of	Borehole								
Boring		ļ	<u> </u>	· · · · ·		Progre	ess				Grour	idwate	r			<u> </u>	
Depth	Hole Dia	-	Technique	e	Crew	Depth of Hole	Depth Cased	Water	Date	Time	Depth Struck	Depth Cased	Rose to	in Mins	Depth Sealed	Remar Ground	ks on Iwater
1.20 9.00	0.30 0.12	Inspect Dynamic Rotary	ion Pit Sample	er and	CJ CJ	G.L. 4.20 4.20 9.00	3.20 3.20 6.10	Dry Dry Dry	16/11/20 16/11/20 17/11/20 17/11/20	08:00 18:00 08:00 18:00						Groundwat not encou during di	ter was untered rilling.
Remar Symbols a abbreviation explained accompan	ks Ags and ons are on the lying	Inspect A Falli Dynamic 5.10-6. Backfil	ion pit ng Head sample 10m,100 l detai	hand e Permea recove %. ls from	xcavat bility ry: 1. base	of hole	1.20m d was car 0m,100% e: bent	lepth an cried ou ; 2.20- conite s	nd no ser it during -3.20m,10 seal up t	vices drill 0%; 3. o 0.50	were fo ing at 20-4.20 m, aris	ound. a dept Om,100% sings u	h of 6. ; 4.20- p to gr	00m. 4.50m, ound 10	Logg 100%; Chec Figur	ied by J ked by F e 1 o	W AS of 1 9/02/2021
key sheet. All dimens are in met	ions res.	Logged in a	accordance	with BS593	30:2015										e	jeeje	LVIES

BOREHOLE RECORD - Dynamic Sampler

Project AQUIND DRAINAGE DESIGN ADDITIONAL GI Engineer

WSP UK LIMITED

Borehole Project No

BH43 PE201667

Client	AQUIN	D LIMII	ED											Ground	Level 3.	46 m (DD
Sampli	ng		Depth	Prope	rties	1	Strat	а							1	Scale 1:	50
Depth		Sample Type	Cased & (to Water)	Strength kPa	w %	SPT N	Descri	ption							Depth	Legend	Level m OD
0.00- 0.00- 0.30-	0.20 0.20 0.40	B ES B					MADE fine fine	GROUND to coar to coar	: Greyis rse. Gra rse sands	sh brow avel is stone,	n sandy angula chert,	grave fr to s glass	l. San ubround and bri	nd is led .ck. /	G.L. 0.25 0.30		3.46 3.21 3.16
0.30- 0.40- 0.40-	0.40 1.00 1.00	ES ES					MADE coar coar	GROUND se. Gra se bricl	: Orange avel is a ks and br	e sandy ingular ick fr	gravel to sub agments	. San prounde	d is fi d fine	ne to to	0.40		3.06
1.20- 1.20 1.20-	3.00 2.20 1.65	В	2.20	TR=	100%	s24	MADE slig subr Hydr	GROUND htly gra ounded i ocarbon	: Grey c avelly CI fine to c odour pr	CCASIO AY. G COArse Cesent.	nally c ravel i flint a	orange s angu nd cli	and bla lar to nker.	ıck			
		- - - -	(Dry)				Medi SAND Betw	um dense . Grave een 1.00	e light h el is ang) and 1.2	orown g gular t 20m, Sa	ravelly o subro nd Blow	fine ounded m out	to coar flint. by	se		р. с.	
2.20 2.20-	3.00 2.65	-	1.20 (Dry)	TR=	80%	s13											
		-							Er	nd of B	orehole	2			3.00		0.46
		-													Ē		
		-													F I		
		-													+		
		- - -													+		
		- -													<u>+</u>		
		- - -													ŧ I		
		- - -													-		
		- -													F		
		- -													F		
		- -													F		
		-													Ę		
		 													F		
		-													Ę		
		- - -													Ę		
		- 													†		
		-													ŧ		
		-													F		
		-													<u>t</u>		
		- - -													<u>+</u>		
		-													<u>+</u>		
		-													ŧ		
Boring		<u> </u>				Prog	ess				Group	dwate	r				
Depth	Hole		Technique	9	Crew	Depth	Depth	Depth to	Date	Time	Depth	Depth	Rose to	in Mine	Depth	Remar	ks on Iwater
1.20	0.30	Inspect	ion Pit		CJ	G.L		water	20/11/20	08:00	JUNCK	Jaseu		111115	Jealeu	Groundwa	ter was
3.00	0.12	vynamic	sampie	: -	CJ	3.0	2.50	Dry	20/11/20	, 10:00						during d	rilling.
Remark	(S AGS	Inspect	ion pit	hand e	excavat	ted to	1.00m	depth an	nd no ser	vices	were fo	und.	h of 3	65m	Logg	ed by J	ſW
Symbols an abbreviation explained of	nd ns are on the	A falli Backfil	ll detai	ls from	n base	of ho	was ca le: ben	tonite :	seal up t	:0 1.20	m, aris	a dept sings u	p to gr	cound le	evel.Chec Figur	ked by E e 1	AS . of 1 9/02/2021
accompany key sheet.	ving														þ	<u>de</u> fi	ries
are in metre	ons es.	Logged in	accordance	with BS59	30:2015											7	

Project No PE201667

Client Aquind Limited

Hole	Danth		Type	SWD	Seating	g Drive		Test	Drive		SPT 'N'		Unco	rrecte	d SPT	
	m bgl	m OD	, she	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	10	20	'N' 30	40	50
BH40	1.20	65.98	s	-	2	3	3	3	3	3	12	*				
BH40	2.20	64.98	s	-	3	3	3	4	4	5	16		*			
Driller			Clyne	Jones			Remark	s								
Hammer No.	. Er (%)		1 EC1	30133												
Calibration D	Energy Ratio, Er (%) 71.00 Calibration Date 17/12/2020															
-/- Blows/pe	enetratior ws/penet	n (mm) at tration (m	fter sea 1m)	ting		S - S C - S	tandard P PT with c	enetration one	Test (SP	T)	G	eon	G	C⊢	N	cs

SWP Penetration under own weight (mm)

L - Split Spoon with liner used

A98 Printed: 22/01/2021 Page 1

Project No PE201667

Client Aquind Limited

Hole	Denth	Level	Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Une	correct	ed SP [.]	г
noie	m bgl	m OD	Type	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	1	0 2	'N' 0 30	40	50
BH41	1.20	89.07	s	-	2	2	2	3	3	5	13		*		1	-
BH41	2.20	88.07	s	-	5	4	6	17	10	12	45		 		1	*
BH41	3.20	87.07	s	-	2	3	2	3	5	4	14		*		1	
BH41	5.50	84.77	s	-	2	2	2	5	5	7	19					
BH41	7.00	83.27	s	-	3	2	2	4	6	4	16		*		 	
BH41	10.00	80.27	S	-	2	7	6	7	8	10	31		 	*	l l	
Driller			Clyne	Jones			Remark	s								
Hammer No.			TEC1	30133												
Energy Ratio	, Er (%)		71.00													
Calibration D	ate		17/12	/2020												
-/- Blows/pe	enetratior ws/penet	n (mm) at tration (m	fter sea 1m)	ting		S - S C - S	tandard P PT with c	enetration one	Test (SP	T)	G	ec	ກດ	÷	-N	CS

SWP Penetration under own weight (mm)

L - Split Spoon with liner used

Printed: 22/01/2021 Page 2

Project No PE201667

Client Aquind Limited

Hole	Danth		Type	SWD	Seating	g Drive		Test	Drive		SPT 'N'		Un	corr	ected	SPT	
	m bgl	m OD	, she	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	1	02	0	'N' 30	40	50
BH42	1.20	84.93	s	-	1	1	2	2	3	3	10		*	 	 	 	- - -
BH42	2.20	83.93	s	-	3	3	4	5	4	4	17		*	 	 	 	
BH42	3.20	82.93	s	-	1	3	4	3	3	2	12		*	 	 	<u> </u>	
BH42	5.10	81.03	s	-	4	5	6	6	10	7	29		 	 	*		
BH42	6.10	80.03	s	-	5	5	4	4	5	2	15		*	 	 	 	
BH42	9.00	77.13	s	-	4	4	5	5	4	5	19		 <mark>1</mark>	, , ,	- - - - -	- 	-
Driller			Clyne	Jones			Remark	(S									
Hammer No.				JUNES			neman	13									
Energy Ratio	. Er (%)		62.00														
Calibration D	Energy Ratio, Er (%) 62.00 Calibration Date 06/03/2020																
-/- Blows/pe	enetratior ws/penet	n (mm) at tration (m	fter sea nm)	ting		S - S C - S	tandard P PT with c	enetration one	i Test (SP	'T)	G	ec	ກດ	X	Ж		cs

SWP Penetration under own weight (mm)

L - Split Spoon with liner used

Printed: 22/01/2021 Page 3

Project No PE201667

Client Aquind Limited

Hole	Denth		Type	SWP	Seating	g Drive		Test	Drive		SPT 'N'		Un	corr	ected	SPT	
noie	m bgl	m OD	Type	(mm)	0-75 (mm)	75-150 (mm)	0-75 (mm)	75-150 (mm)	150-225 (mm)	225-300 (mm)	Value	1	0 2	20	'N' 30	40	50
BH43	1.20	2.26	s	-	4	5	7	7	5	5	24	-		*		1	
BH43	2.20	1.26	s	-	1	1	2	4	3	4	13		*			 	
Driller			Clyne	Jones			Remarl	(S									
Finammer No.	Fr (%)		71 00	30133													
Energy Ratio, Er (%) 71.00 Calibration Date 17/12/2020																	
-/- Blows/pe	enetratior ws/penet	n (mm) at tration (m	iter sea 1m)	ting		S - S C - S	tandard P PT with c	enetration	Test (SP	T)	G	ec	זת	ЭС	¥	N	cs

SWP Penetration under own weight (mm)

L - Split Spoon with liner used

A98 Printed: 22/01/2021 Page 4

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Unit 25 Stella Gill Industrial Esatate Pelton Fell Chester-le-Street DH2 2RG

Instrumented Rod Data

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.5
Assumed Modulus Ea (GPa):	208
Accelerometer No.1:	5991
Accelerometer No.2:	5990

SPT Hammer Ref:TEC 130133Test Date:17/12/2020Report Date:17/12/2020File Name:1904052.sptTest Operator:BP

SPT Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
SPT String Len	gth L (m):	14.1

Comments / Location

Mass and drop supplied by client

The recommended calibration interval is 12 months

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH40 - Reinstated

BH41 - Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH41 - Reinstated

BH42 - Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH42 - Reinstated

BH43 - Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH43 - Reinstated

APPENDIX 5

Dynamic Sample and Rotary Photographs

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH41 1.20 - 4.50m

BH41 6.00-10.00m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH42 4.20 - 6.10m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

BH42 6.10 - 9.00m

APPENDIX 6

Trial Pit Records

AQUIND LIMITED

Client

Project aguind drainage design additional gi

Trial Pit

Engineer

National Grid Coordinates

WSP UK LIMITED

467850.842E 99126.187 N Trial PitHProject NoP

Ground Level 3.49

HP01 PE201667

m OD

Depth Type Statum to Description Depth Lagend Lagend <thlagend< th=""> <thlagend< th=""> <thlagend< th=""><th>Samples and</th><th>l Tests</th><th></th><th>Strata</th><th></th><th>Scale 1:</th><th>50</th></thlagend<></thlagend<></thlagend<>	Samples and	l Tests		Strata		Scale 1:	50
MADE GROUND: Greyish brown occasionally pinkish grey sandy grevel. Sand is fine to coarse. Grevel is chert. rare brick and glass fragments, clinker and bitmac. Brown very sandy GRAVEL. Sand is fine to coarse. Grevel is angular to subrounded fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse chert. Brown very sandy GRAVEL of the to coarse chert.	Depth	Type Stra	atum Results No	Description	Depth	Legend	Level m OD
Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.10 Light brown slightly gravelly fine to coarse chert. 1.00 1.10 Dravel is angular to subrounded fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is fine to coarse chert. 1.00 1.00 Brown very sandy GRAVEL. Sand is				MADE GROUND: Greyish brown occasionally pinkish grey sandy gravel. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse sandstone, chert, rare brick and glass fragments, clinker and bitmac.	G.L. 0.30 0.40		3.49 3.19 3.09
Lind Lind Line Lind Line to coarse chart.	-			Brown very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse chert.	-1.00		2.49
End of Excavation	-			Light brown slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse chert.	1.10		2.39
	-			Brown very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse chert.	-		
	-			End of Excavation	- 		
NN	-				-		
Image: state	-				-		
Image: product of the second					 - -		
AA<	-				-		
Image: Section of the section of th	- - -				-		
NNN<	-				-		
Image: state s	-				-		
Image: section of the section of th	-				- - 		
Image: state s	-				-		
Image: Section of the section of t	-				-		
Image: state in the state i	- -				-		
	-				-		
	-				-		
	 				- - -		
	-				-		
	-				-		
	-				- - -		
	-				-		
	-				-		
	-				-		
	-				- - -		
					-		
Excavation Groundwater	Excavation			Groundwater			
Date 2 Tonne Mini-Excavator Width (b) 0.60 Date 19/11/2020 Length (C) 1.50 Shoring None.	Date 19/11 Shoring None.	ne Mini-Ez 1/2020	xcavator W Le	ength (C) 1.50			
Date Backfilled 19/11/2020 Stability Stable during excavation.	Stability Stabl	le during e	Da excavation.	ate Backfilled 19/11/2020			
Remarks	Remarks					Logged by a	w
Area Checked by EAS Symbols and abbreviations are Checked by EAS	AGS Symbols and abbreviations are					Checked by Figure 1	EAS of 1 19/02/2021
explained on the accompanying key sheet.	explained on the accompanying key sheet.					nanjaar.	പ്പുട
All dimensions are in metres. Logged in accordance with BS5930:2015	All dimensions are in metres.	Logged in acco	ordance with BS5930:2015			الفخليتين	

AOUIND LIMITED

Samples and Tests

Client

Project aguind drainage design additional gi

Trial Pit

Strata

Engineer

National Grid Coordinates

WSP UK LIMITED

467842.829E 99127.273 N Trial Pit Project No

Ground Level 3.44

HP02 PE201667

Scale

m OD

1:50

Stratum Level Depth Туре Results Depth Legend Description m OD No 3.44 G.L. MADE GROUND: Greyish brown occasionally pinkish grey sandy gravel. Sand is fine to coarse. Gravel is angular to subrounded sandstone, chert, rare brick 0.30 3.14 fragments, glass and clinker. 0.35 3.09 MADE GROUND: Black sandy gravel. Sand is fine to coarse. Gravel is angular to subrounded fine to 0.70 2.74 medium clinker. 1.10 2.34 Light brown slightly gravelly fine to coarse SAND. Gravel is angular to subrounded fine to coarse chert. Brown very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse chert. End of Excavation F Excavation Groundwater Depth Observe Depth of Pit Width (B) Plant 2 Tonne Mini-Excavator 19/11/2020 0.60 Details Date Length (Ć) 1.20 Shoring None. Date Backfilled 19/11/2020 Stability stable during excavation. Remarks Ags Logged by Checked by .TW EAS Symbols and abbreviations are Figure 1 of 1 09/02/2021 explained on the accompanying ezimbelogo kev sheet. All dimensions are in metres. Logged in accordance with BS5930:2015

Trial Pit Engineer

National Grid

WSP UK LIMITED

Trial Pit Project No

TP21 PE201667

Samples and Tests Strata Scale 1:50 Daph Uppo Status Doccryption Doption Doption Doption Doption Scale 1:50 Scale 1	Client Aquin	D LIMIJ	ED		National Grid 467601 Coordinates 113169	.0 E .0 N	G	Ground Leve	l 79.00 m	OD
Depth Type State in the second secon	Samples and	Tests			Strata				Scale 1	:50
1.00 0.53 0.53 1.00 1000011. Dark boom stightly sandy slightly gravelly clay. Gewil is molecular to sixtended film to 0.53 0.53 1.00 0.10 0.53 0.53 0.10 0.53 0.53 1.00 1000010000000000000000000000000000000	Depth	Туре	Stratum No	Results	Description			Depth	Legend	Level m OD
0.50 is <	0.30	ES			TOPSOIL: Dark brown sligh clay. Gravel is subangula coarse chalk.	tly sandy slight r to subrounded	tly gravelly fine to	G.L. 0.25		79.00 78.75
Excavation Excava	- 0.50 - 0.50 - 0.50- 1.00	ES LB			Firm dark brown slightly s with a low cobble content flint. Gravel is subangul coarse flint.	andy slightly g of angular to su ar to subrounded	ravelly CLAY ubangular l fine to	1.00		78.00
EXCAVATION Plant 3 Tome Excavation Plant 3 Tome Excavation Plant 3 Tome Excavation Date Backfilled 16/11/2020 Date Backfilled 16/	- - -				End of E	xcavation				
Excavation Excava	- - -							-		
Excavation Groundwater Final 3 roune Secavator Unit 1/2000 0.60 Durphin (C) 2.00 Durphin (C)	-							-		
Excavation Excavation Excavation Width (8) 0.60 LogMin (8) 0.60 LogMin (8) Dete lackfilled 16/11/2020 Date lackfilled 16/11/2020	-							-		
Excavation Excavation Excavation But 5 rone Bockraitor Lingh (0) 0.60 Lingh (0) 0	- - -									
Excavation	- - -							-		
Excavation Excavation Excavation Excavation Excavation Excavation Excavation Excavation Date is fill/2020 Date Backfilled 16/11/2020 Date Backfilled 16/11/2	- - -							-		
Excavation Excavation Part 5 Tome Excavator Date 16/11/2020 Vidth (8) Length (C) 2.00 Date Backfilled 16/11/2020 Date Backfilled	- - -									
Excavation Plant 5 roune Excavator Date 16/11/2020 Plant (C) 2.00 Date Backfilled 16/11/2020 Date Back										
Excavation Groundwater Plant 5 Tonne Excavator Date 2.00 Date Date Stability stable during excavation.	- - -							-		
Excavation Fint 5 Tonne Excavator Date 16/11/2020 Stability Stable during excavation. Width (8) Length (C) 2.00 Date Backfilled 16/11/2020 Date Backfilled 16/11/2020 Date Date 16/11/2020 Date 16/11/2	- - -									
Excavation Excavation Midth (8) Length (2) Stability stable during excavation. Kind and an an analysis and an								-		
Excavation Plant 5 Torme Excavator Plant 5 Torme Excavator Date Backfilled 16/11/2020 Date Backfilled	- - -									
Excavation Plant 5 Torone Excavator Plant 5 Torone Excavator Date 16/11/2020 Shoring None. Stability stable during excavator.	- - -									
Excavation Excavator Date 16/11/2020 Shoring None. Stability stable during excavation.								-		
Excavation Groundwater Plant 5 Tonne Excavator Width (B) 0.60 Date 16/11/2020 Depth Oepth Stability stability stability Stability Stability stability stability Stability	- - -									
Excavation Excavation Excavator Date 5 Tonne Excavator Length (C) 2.00 Date Backfilled 16/11/2020 Construction Date backfilled 16/11/2020 Date Backfilled 16	- - -							-		
Excavation Groundwater Plant 5 Tonne Excavator Date 16/11/2020 Shoring None. Date Backfilled Stability Stability Stability Stability Stability Stability Stability Stability	- - -							-		
Excavation Groundwater Plant 5 Tonne Excavator Date 16/11/2020 Shoring None. Date Backfilled Stability stable during excavation.	- - -									
Excavation Groundwater Plant 5 Tonne Excavator Date 16/11/2020 Shring None. Depth Stability Stable during excavation.	- - -									
Excavation Groundwater Plant 5 Tonne Excavator Date 16/11/2020 Shoring None. Stability Stable during excavation.	- - -									
Excavation Groundwater Plant 5 Tonne Excavator Date 16/11/2020 Shoring None. Stability stable during excavation.	- - -							-		
Excavation Groundwater Plant 5 Tonne Excavator Width (B) 0.60 Date 16/11/2020 Depth Depth Shoring None. Date Backfilled 16/11/2020 Stability stable during excavation. Date Backfilled 16/11/2020										
Excavation Groundwater Plant 5 Tonne Excavator Width (B) 0.60 Date 16/11/2020 Depth Depth Depth Shoring None. Date Backfilled 16/11/2020 Date Backfilled 16/11/2020 Stability stable during excavation. Date Backfilled 16/11/2020 Groundwater not encountered during pitting.	- - -							-		
Excavation Groundwater Plant 5 Tonne Excavator Width (B) 0.60 Date 16/11/2020 Depth Depth Depth Shoring None. Date Backfilled 16/11/2020 Groundwater not encountered during pitting. Stability stable during excavation. Depth Depth Depth Depth Date Backfilled 16/11/2020 Date Backfilled 16/11/2020 Groundwater not encountered during pitting.	-							-		
Excavation Groundwater Plant 5 Tonne Excavator Width (B) 0.60 Date 16/11/2020 Length (C) 2.00 Shoring None. Date Backfilled 16/11/2020 Stability stable during excavation. Date markfilled 16/11/2020								F		
Date 16/11/2020 Length (C) 0.60 Shoring None. Date Backfilled 16/11/2020 Stability stable during excavation. Date Backfilled 16/11/2020	Excavation				Vidth (B)	Groundwater	Dotaile			
Stability stable during excavation.	Date 16/11 Shoring None.	пе ±хса /2020	wator	L	ength (C) 2.00	Observed of Pit	Groundwater n	ot encount	ered during	pitting.
	Stability Stabl	e durir	ıg exca	L avation.	ate Backfilled 16/11/2020					
Kemarks II a soakaway test was carried out on completion of the trial pit and the results are presented Logged by PS ACS separately. Supple and the results are presented Logged by PS Checked by EAS	Remarks	A Soaka separat	way Te	est was carri	ed out on completion of the	trial pit and th	ne results are	presented	Logged by I Checked by I	PS EAS
Approximate co-ordinates: 467734, 113169 at 80m AOD.	abbreviations are explained on the accompanying key sheet	Approxi	mate c	co-ordinates:	: 407734, 113169 at 80m AOD.					1 01 1 09/02/2021
All dimensions are in metres. Logged in accordance with BS5930:2015	All dimensions are in metres.	Logged in	accordanc	ce with BS5930:201	5				7	

Trial Pit

Engineer

WSP UK LIMITED

Trial PitTIProject NoPE

TP22 PE201667

Client AQUIN	D LIMI	red		National Grid 467734 Coordinates 113169	.0 E .0 N	Gr	ound Leve	l 80.00 m	OD
Samples and	Tests	1		Strata				Scale 1	:50
Depth	Туре	Stratum No	Results	Description			Depth	Legend	Level m OD
- 0.20 0.30- 0.50 - 0.50 - 0.50	ES LB D ES			TOPSOIL: Brown slightly so rootlets. Firm dark yellowish brown gravelly CLAY with low cob subangular flint. Gravel is fine to coarse flint.	andy clay with c slightly sandy s ble content of a s subangular to	occasional slightly ungular to subrounded	G.L. 0.30		80.00 79.70
- - 1.50	D			Structureless CHALK. Reco gravelly sandy SILT. Grav white (Grade Dm).	vered as cream s el is weak, low	lightly density and	1.20		78.80
				End of E	xcavation		1.70		78.30
Excavation Plant 5 Tom Date 16/11 Shoring None.	ne Exca /2020			Width (B) 0.60 2.00	Groundwater Depth Depth Observed of Pit	Details Groundwater no		ered during	pitting.
Shoring None.			[Date Backfilled 16/11/2020		Groundwater no	t encount	ered during	pitting.
Stability Stable	e durir	ng exca	avation.	10/11/2020					
Remarks Symbols and abbreviations are explained on the accompanying key sheet. All dimensions are in metres.	A Soaka separat Approxi	away Te cely. imate o accordance	est was carr: co-ordinates	ied out on completion of the . : 467601, 113173 at 79m AOD.	trial pit and th	ne results are	presented	Logged by Checked by Figure	PS EAS 1 of 1 09/02/2021

Trial Pit Engineer

WSP UK LIMITED

National Grid 467309.219E

Trial Pit Project No

TP23 PE201667

Client AQUIN	D LIMIT	red		Coordinates 1	13181.444N		Ground Leve	el 77.92 m	OD
Samples and	Tests			Strata				Scale 1	:50
Denth	Type	Stratum	Results	Description			Denth	enend	Level
Deptil	, yhe	No	NESUILS	Description			Deptii	Leyenu	m OD
F				TOPSOIL: Grass over	dark brown slight	ly sandy clay.	G.L.		77.92
0.20- 0.80	B ES			Firm orangish brown s	lightly sandv sli	ghtly gravelly	0.20	; 2	77.72
0.50	D			CLAY with a moderate	cobble content of	angular to	0.50		77.42
0.50	69			fine to coarse flint.	avei is subanguia	ir co subrounded	/E	······································	1
- 0.90	D			Structureless CHALK.	Recovered as cre	am slightly			76.92
-				sandy gravelly SILT.	Gravel is weak,	low density and			
F				End	of Excavation		-/F		
					or Excavation		E		
-							-		
E I							E I		
-							E I		
E							E		
							-		
-							-		
-							-		
							E		
E							E		
F									
F I									
F I							F		
E							E		
<u>F</u>							E		
-							E I		
-							E I		
F							F		
F							F		
<u> </u>									
E							E		
-							E I		
-							E I		
-							-		
-							-		
E									
-							E I		
-									
<u> </u>							<u> </u>		
-							F		
E							E		
È I							E		
F I							F		
E I							E		
E							E I		
F									
È ∣							E		
F							F		
Excavation				ļ	Groundwa	tor			
			١٨	/idth (B)	Depth De	epth Details			
Date 18/11	пе ±хса /2020	avator	L	ength (C) 2.00	Observed of	Pit			
Shoring None.			D	ate Backfilled 18/11/2020		Groundwater	not encount	tered during	pitting.
Stability Stable	e durin	ng exca	vation.						
Remarks 🛄					I	I		Logged by 1	PS
Symbols and								Figure	sas Lof 1
abbreviations are explained on the								⁽	9/02/2021
accompanying key sheet.									ഫീദ്ദ
All dimensions				_					
are in metres.	∟ogged in	accordanc	e with BS5930:201	0					

Project aguind drainage design additional gi

Trial Pit Engineer

WSP UK LIMITED

Trial Pit Project No

TP24 PE201667

amples and	l Tests			Strata				Scale 1	:50
Depth	Туре	Stratum No	Results	Description			Depth	Legend	Leve m OD
				TOPSOIL: Grass over soft	dark brown slig	ghtly sandy	G.L.	1	68.
0.30	D			Clay.	alightly			· · · 2 · · · ·	68.
0.45- 1.60 0.50	LB D			Gravel is subangular to s chalk and flint.	ubrounded fine t	to coarse	- 0.45		. 08.
0.50	ES			Structureless CHALK. Rec	overed as brown:	ish cream			
				slightly sandy gravelly s density, white with occas	ILT. Gravel is ional flint (Gra	weak, low ade Dm).	-		
1.50	D						- 1.60		67.
				End of	Excavation				•••
							Ē		
							Ē		
							-		
							E		
							-		
							-		
							-		
							-		
							Ē		
							-		
							-		
							-		
							-		
							-		
							-		
							-		
							–		
xcavation		·			Groundwater			·	•
ant 5 Tor ate 18/11	ne Exca /2020	avator		Width (B) 0.60 Length (C) 2.00	Observed of Pit	Details			
ability Stabl	e durin	ng exca	vation.	Date Backfilled 18/11/2020		Groundwater no	ot encount	cered during	pittir
emarks								Logged by	PS EAS
mbols and breviations are								Figure	1 of 1
plained on the companying									᠂᠆ᡥᢇ
y sneet.								ਿਤਿਆਤਰਾ	nnt

Trial Pit Engineer

WSP UK LIMITED

Trial Pit Project No

TP25	
PE201667	

Client AQUIN	D LIMI	red		National Grid 467097. Coordinates 113311.	161E 099N	Gr	ound Leve	l 73.10 m	OD
Samples and	Tests			Strata				Scale 1	:50
Depth	Туре	Stratum No	Results	Description			Depth	Legend	Level m OD
 0.20- 1.00 0.30 0.50 0.50	LB ES D ES			TOPSOIL: Grass over dark h slightly gravelly clay. Gr subrounded fine to coarse f Firm reddish brown slightly CLAY with an occasional cob subangular flint Gravel i	rown slightly sa avel is subangul lint. 'sandy slightly ble content of ; s subangular to	andy lar to gravelly angular to subrounded	G.L.		73.10 72.90
- 				fine to coarse flint.	s subangulai to		1.00	· · · · · · · · · · · · · · · · · · ·	72.10
-				End of Ex	cavation		-		
E							-		
-							-		
-							-		
							-		
-							-		
 							-		
-							-		
-							-		
							_		
-							-		
							-		
-							-		
-							-		
-							-		
							-		
 C							-		
-							-		
							-		
-							-		
-							-		
 							-		
-							-		
							-		
							-		
-							-		
							-		
-							-		
Ę							-		
F							-		
Excavation		1		<u> </u>	Groundwater				1
Plant 5 Ton Date 18/11	ne Exc. /2020	avator		Width (B) 0.60 Length (C) 2.00	Depth Depth Observed of Pit	Details	_		
Stability Stability	e duri:	ng exce	vation.	Date Backfilled 18/11/2020		Groundwater no	t encount	ered during	pitting.
		5 - 1100							
Remarks								Logged by Checked by	PS EAS
Symbols and abbreviations are								Figure	1 of 1 09/02/2021
explained on the accompanying key sheet.								പ്പ	ഫിദ്ദ
All dimensions are in metres.	Logged in	accordanc	e with BS5930:20	15				للحسحاع	
	00								

Trial Pit

WSP UK LIMITED

Trial PitTPProject NoPE2

TP26 PE201667

Client AQUIN	D LIMI	red		National Grid 4 Coordinates 1	67060.847E 13378.632N		Ground L	evel 77.31	m OD
Samples and Tests				Strata				Scale	1:50
Depth	Туре	Stratum No	Results	Description			Depth	n Legend	Level m OD
0.20- 0.80	LB ES			TOPSOIL: Grass over 1 gravelly clay. Grave fine to coarse flint	brown slightly sar l is subangular to with frequent root	ndy slightly subrounded llets.	G.L		77.31
- 0.50 - 0.50 	D ES B			Firm orangish brown si CLAY with a medium col subangular flint. Gra fine to coarse flint a	lightly sandy slig bble content of ar avel is subangular and chalk.	ghtly gravelly ngular to r to subrounded	0.8	0	76.51
1.50	D			Structureless CHALK. silty subangular to su Clasts are weak, low of speckling. Matrix is	Recovered as slig ubrounded GRAVEL a density, white wit cream (Grade Dm).	ghtly sandy and COBBLES. Ch rare black			
2.00- 2.50	D						-		
2.30	D						2.5	0	74.81
				End	of Excavation		- 2.5		74.81
- - - - - - - - - - - - - - - - - - -									
- - - -									
_									
EXCavation	16 EV.	avator	,	Width (B) 2.00	Groundwat	er pth Details			
Date 17/11 Shoring None.	/2020			Length (C) 0.60	Observed of	Groundwater	not enco	untered durin	g pitting.
Stability Stable	ə duriı	ng exca	avation.	Date Backfilled 17/11/2020					
Remarks and Symbols and abbreviations are explained on the accompanying key sheet. All dimensions	A Soaka separat	away Te tely.	est was carr	ied out on completion of	 the trial pit and	 l the results ar	e presen	ted Logged by Checked by Figure	PS EAS 1 of 1 09/02/2021
are in metres.	_ogged in	accordan	ce with BS5930:20	15					

Trial Pit Engineer

WSP UK LIMITED

National Grid 467149.383E

Trial Pit Project No

TP27 PE201667

Client AQUINE	LIMI	TED		Coordinates 11346	Gr	Ground Level 80.75 m OD						
Samples and	Tests			Strata	Strata				Scale 1:50			
Depth	Туре	Stratum	Results	Description			Depth	Legend	Level m OD			
		NO					G.L.		80.75			
-				TOPSOIL: Grass over dark slightly gravelly clay.	brown slightly a Gravel is subangu	sandy ular to	-		80.55			
0.30	ES			subrounded fine to coarse	flint with frequ	uent roots.						
0.50	D			Soft to firm orangish bro	wn slightly sand	y slightly	-	···· 2 ······				
0.50	ES			gravelly CLAY with a medi Gravel is subangular to s	um cobble content ubrounded fine to	t of flint. D coarse	-		- - -			
- 1.00- 1.50	в			flint.			<u> </u>		79.75			
- 1 30				From 0.80m, Gravelly.		/	-]			
- 1.30	D			Structureless CHALK. Rec silty subangular to subro Clasts are weak, low dens brownish cream (Grade Dm)	overed as slight unded GRAVEL and ity and white. 1	ly sandy COBBLES. Matrix is	1.50		79.25			
-				End of	Excavation]						
							-					
-							-					
-							-					
-												
-							-					
-							-					
-							-					
E							E					
\vdash							 -					
¢ ∣												
-							_					
							-					
<u>E</u>												
							_					
-							-					
-							-					
F							-					
							_					
							-					
-							_					
							-					
-							-					
							-					
E							_					
-							_					
							-					
-							-					
E I							-					
							-					
È I												
F I							-					
E												
F I							-					
₽ I							-					
F							<u>-</u>					
Excavation					Croundwater							
Plant	DO Erro			Width (B)	Depth Depth	Details						
Date 16/11/	2020	avator		Length (C) 2.00	Observed of Pit							
Shoring None.				Date Backfilled 16/11/2020		Groundwater no	t encount	cered during	pitting.			
Stability Stable	e durin	ng exca	vation.									
Remarks 🛄 🗚	Soaka	away Te	st was car	ried out on completion of the	trial pit and th	he results are	presented	Logged by	PS			
Symbols and	separat	ce⊥y.						Figure	LAS 1 of 1			
abbreviations are explained on the									09/02/2021			
accompanying key sheet.									പ്പം പ്ര			
All dimensions												
are in motros	oggod in	accordor	with BSE020-	015				07				

Trial Pit

Engineer

WSP UK LIMITED

Trial PitTProject NoPI

TP28 PE201667

467826.580E 99137.284 N National Grid Coordinates Client AQUIND LIMITED Ground Level 3.46 m OD 1:50 Samples and Tests Strata Scale Stratum Level Depth Туре Results Depth Legend Description m OD No G.L. 3.46 MADE GROUND: Brown sandy gravel. Sand is fine to coarse. Gravel is angular to subrounded fine to coarse sandstone, limestone and chert. Sand is fine to 1 0.20- 0.30 0.20- 0.30 0.30- 1.00 0.30- 1.00 B ES 0.30 3.16 в ES At 0.29m, Geotextile membrane separating made ground 2 from central soils. ø 1.00- 1.70 1.00- 1.70 B ES Brown very sandy GRAVEL. Sand is fine to coarse. Gravel is angular fine to coarse chert and sandstone. 1.00 2.46 Light brown gravelly SAND. Gravel is angular to subrounded fine to coarse chert and sandstone. 3 1.70 1.76 End of Excavation F Excavation Groundwater Depth Observe Depth of Pit Width (B) Plant 5 Tonne Excavator 19/11/2020 0.60 Details Date Length (Ć) 2.20 Shoring None. Date Backfilled 19/11/2020 Stability stable during excavation. Remarks -Logged by Checked by .TW EAS Symbols and abbreviations are Figure 1 of 1 09/02/2021 explained on the accompanying ezimbelogo kev sheet. All dimensions are in metres. Logged in accordance with BS5930:2015

APPENDIX 7

Trial Pit Photographs

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP21 Before

TP21 GL-1.00m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP21 Spoil

TP21 After

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP22 Before

TP22 GL-1.70m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP22 After

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP23 Before

TP23 GL-1.00m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP23 After

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP24 Before

TP24 GL-1.60m

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP24 After

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP25 GL-1.00m

TP25 Spoil

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP26 Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP26 GL-2.50m

TP26 Spoil

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP26 After

TP27 Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP27 GL-1.50m

TP27 Spoil

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP28 - Before

Project Number : PE201667

Project : Aquind Additional Ground Investigation

TP28 - Backfilled

APPENDIX 8

Borehole Permeability Test Results

INSIT	U TESTING - Permea	bility (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additio	nal GI	Borehole	BH40
			Project No	PE201677
			Test No	I
Client	WSP UK Limited		Date	19/11/2020
Water P	Permeability Test in a B orehole	using Open Systems in ac	cordance with BS	EN ISO 22282-2:201
Borehole	e Details	Test Details		
Inclinatior	n Vertical	Test Type	Variable	e Head - Falling

Hydrogeological Conditions

Type of Filter

Isolation Device

Dynamic Sampling

E 467041.0

N | | 3 | 42.6

Method of Drilling

Co-ordinates (m)

Level (m OI	D)	67.18		Test Section Dia. (m)	0.12	
				Measuring Tube Dia. (m)	0.12	
Test Meas	urements			Height of Casing /	A 833	
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Datum above GL (m) = -0. (negative value if above ground)	45 V	Datum = Top of Casing
(minutes)	(m)	(minutes)	(m)		· ·	Depth to
0.0	1.20					Standing
0.5	1.80			Depth to t	op ¦	Water below Gl
1.0	2.16			of Test Sector	tion I	(m) = 3.20
1.5	2.32			Depth to bottom of Test Section)=		
2.0	2.36			below GL (m)= 1.80		↓ ↓ Standing WL
2.5	2.42			Before 3.20		-
3.0	2.47			After 2.60		
3.5	2.47					
4.0	2.49				i	
4.5	2.52				v	
5.0	2.60					Length of Test Section
6.0	2.60					(m) = 1.40
7.0	2.60			V		i ✔
8.0	2.60					
9.0	2.60			Depth to Standing Water Leve	l below Datur	n 3.65 m
10.0	2.60			Depth to Induced Water Level	below Datum	l.20 m
15.0	2.63			Differential head at start of Te	st (H _{o)}	2.45 m
20.0	2.66			Differential Head at end of Tes	st (H _f)	0.75 m
30.0	2.70			Time Elapsed at end of test (t_f)		30.0 mins
				Weather during Test		
				Test Carried Out By	CJ	
				Test Checked By	AS	
				Description of Test Section	Structur	eless CHALK

Test Section Patially Saturated

None

None

roject lient	Aqui WSF	nd Draina 9 UK Limit	ge Design ed	Additiona	I GI				Borehole Project N Test No Date	No	BH40 PE201677 I 19/11/202	, 20
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	T (r	Time nins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	1.20	0.75	2.45	0.00							
	0.5	1.80	1.35	1.85	0.76							
	1.0	2.16	1.71	1.49	0.61							
	1.5	2.32	1.87	1.33	0.54							
	2.0	2.36	1.91	1.29	0.53							
	2.5	2.42	1.97	1.23	0.50							
	3.0	2.47	2.02	1.18	0.48							
	3.5	2.47	2.02	1.18	0.48	-						
	4.0	2.49	2.04	1.16	0.47							
	4.5	2.52	2.07	1.13	0.46							
	5.0	2.60	2.15	1.05	0.43							
	6.0	2.60	2.15	1.05	0.43							
	7.0	2.60	2.15	1.05	0.43							
	8.0	2.60	2.15	1.05	0.43							
	9.0	2.60	2.15	1.05	0.43							
	10.0	2.60	2.15	1.05	0.43							
	15.0	2.63	2.18	1.02	0.42							
	20.0	2.66	2.21	0.99	0.40							
	30.0	2.70	2.25	0.95	0.39							
r	1	5	10		15 I IME	(minute	20		25	30		35
3.0 -												Ĩ
2.5												
	,											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

NB. Borehole collapsed from 3.20m back to 2.60m during the test.

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Sheet 3 - I	Form INS005 Rev 6 Interpretation of Results (Page 1)
Project	Aquind Drainage Design Additional GI	Borehole	BH40
		Project No	PE201677
		Test No	1.000
Client	WSP UK Limited	Date	19/11/2020

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	2.45	1.00	9.0	1.05	0.43				
0.5	1.85	0.76	10.0	1.05	0.43				
1.0	1.49	0.61	15.0	1.02	0.42				
1.5	1.33	0.54	20.0	0.99	0.40				
2.0	1.29	0.53	30.0	0.95	0.39				
2.5	1.23	0.50							
3.0	1.18	0.48							
3.5	1.18	0.48							
4.0	1.16	0.47							
4.5	1.13	0.46							
5.0	1.05	0.43							
6.0	1.05	0.43							
7.0	1.05	0.43				1			
8.0	1.05	0.43							

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	3.65	m
Depth to Induced Water		
Level	1.20	m
Differential head at start (H _{o)}		
	2.45	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.40	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.791	
Time (t1)	1.50	mins
Time (t2)	5.00	mins
Head at Time tI (HI)	13.130	m
Head at Time t2 (H2)	1.050	m
Permeability (k) = A/(F[t2-	4.87E-05	m/sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TEST	ING - Permeabilit	y (Borehole)	Form INS005 Rev (Sheet I - Test Details and Measured Value		
Project	Aquind Dra	ainage Design Additional G	l	Borehole	BH40	
				Project No	PE201677	
				Test No	2	
Client	WSP UK L	imited		Date	19/11/2020	
Borehole I	Details					
Indiantian			l est Details			
Inclination		Vertical	Test Type	Variable	Head - Falling	
Method of [Drilling	Vertical Dynamic Sampling	Test Type Hydrogeological Con	Variable ditions Test See	e Head - Falling ction Patially Saturated	

Isolation Device

Test Section Dia. (m)

None

0.12

N | | 3 | 42.6

67.18

Level (m OD)

				Measuring Tube	Dia. (m)	0.12		
Test Meas	urements		Death of	Height of	Casing /	⊼ □	5	Top of
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Water below Top of Casing (continued)	Datum al (m) (negative value	bove GL) = -0.45 e if above ground)	- - - -	Datum =	Casing
(minutes)	(m)	(minutes)	(m)	/		<u>*</u> * *	Depth to	
0.0	1.20						Standing	
0.5	1.78				Depth to top		Water below Gl	
1.0	2.14				of Test Section		(m) =	3.20
1.5	2.32			Depth to bottom)=			
2.0	2.40			below GL (m)=	1.80		🖌 Standi	ng WL
2.5	2.43			Before 3.20		1	-	
3.0	2.48			After 2.60				
3.5	2.49							
4.0	2.50					1		
4.5	2.55					v	Length of	
5.0	2.60						Test Section (m)	
6.0	2.60						=	I.40
7.0	2.60				<u> </u>	V		
				Depth to Standing	Water Level be	alow Datum	3.65	m
				Depth to Induced	Water Level be	low Datum	1.20) m
				Differential head a	it start of Test (H _{o)}	2.45	5 m
				Differential Head	at end of Test (l	H _f)	0.43	8 m
				Time Elapsed at ei	nd of test (t _f)		7.0) mins
				Weather during	Test			
				Test Carried Ou	ıt By	CJ		
				Test Checked B	у	AS		
				Description of T	est Section	Structurel	ess CHALK	
	L	_	<u> </u>					

roject Client	Aqui WSP	nd Draina 9 UK Limit	ge Design ed	Additiona	I GI			Borehole Project N Test No Date	No	BH40 PE201677 2 19/11/2020	0
	Test Res	ults									
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	1.20	0.75	2.45	0.00						
	0.5	1.78	1.33	1.87	0.76						
	1.0	2.14	1.69	1.51	0.62						
	1.5	2.32	1.87	1.33	0.54						
	2.0	2.40	1.95	1.25	0.51						
	2.5	2.43	1.98	1.22	0.50						
	3.0	2.48	2.03	1.17	0.48						
	3.5	2.49	2.04	1.16	0.47						
	4.0	2.50	2.05	1.15	0.47						
	4.5	2.55	2.10	1.10	0.45						
	5.0	2.60	2.15	1.05	0.43						
	6.0	2.60	2.15	1.05	0.43						
	7.0	2.60	2.15	1.05	0.43						
ļ			L		Time	minutes)			l	<u> </u>	
()	1	2	3	-	4	5	6	7	8	3
3.0 - 2.5 -	•										
2.0 -	•										

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

NB. Borehole collapsed from 3.20m back to 2.60m during the test.

INSITU	J TESTING - Permeability (Borehole)	Sheet 3 - I	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)		
Project	Aquind Drainage Design Additional GI	Borehole	BH40		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	19/11/2020		

Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	2.45	1.00	ľ						
0.5	1.87	0.76							
1.0	1.51	0.62							
1.5	1.33	0.54							
2.0	1.25	0.51							
2.5	1.22	0.50							
3.0	1.17	0.48							
3.5	1.16	0.47							
4.0	1.15	0.47	ľ						
4.5	1.10	0.45							
5.0	1.05	0.43							
6.0	1.05	0.43							
7.0	1.05	0.43	ľ						

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	3.65	m
Depth to Induced Water		
Level	1.20	m
Differential head at start $(H_{o)}$		
	2.45	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.40	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.791	
Time (t1)	1.50	mins
Time (t2)	5.00	mins
Head at Time t1 (H1)	1.330	m
Head at Time t2 (H2)	1.050	m
Permeability (k) =	4 56E-06	mlsoc
A/(F[t2-	4.302-00	III/sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permea	bility (Borehole)	Sheet I -	Form INS005 Rev Test Details and Measured Value	6 25
Project	Aquind Drainage Design Addition	nal GI	Borehole	BH40	
			Project No	PE201677	
			Test No	I	
Client	WSP UK Limited		Date	19/11/2020	
Water P	ermeability Test in a Borehole	using Open Systems in ac	cordance with BS	EN ISO 22282-2:201	
Borehole	e Details	Test Details			-
Inclinatior	n Vertical	Test Type	Variable	e Head - Falling	

Type of Filter

Isolation Device

Test Section Dia. (m)

Dynamic Sampling

E 467041.0

N | | 3 | 42.6

67.18

Hydrogeological Conditions

Method of Drilling

Co-ordinates (m)

Level (m OD)

				Measuring Tube Dia. (m) 0.12
Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = -0.45 (negative value if above ground)
(minutes)	(m)	(minutes)	(m)	L Depth to
0.0	1.20			Standing
0.5	1.80			Depth to top Water
1.0	2.16			below GL (m ! (m) = 15.00
1.5	2.32			of Test Section)=
2.0	2.36			below GL (m)= 1.80
2.5	2.42			Before 3.20
3.0	2.47			After 2.60
3.5	2.47			
4.0	2.49			
4.5	2.52			v v
5.0	2.60			A Length of
6.0	2.60			(m) = 1.40
7.0	2.60			
8.0	2.60			
9.0	2.60			Depth to Standing Water Level below Datum 15.45 m
10.0	2.60			Depth to Induced Water Level below Datum I.20 m
15.0	2.63			Differential head at start of Test (H _o) I4.25 m
20.0	2.66			Differential Head at end of Test (H _f) 0.75 m
30.0	2.70			Time Elapsed at end of test (t _f) 30.0 mins
				Weather during Test
				Test Carried Out By CJ
				Test Checked By AS
				Description of Test Section Structureless CHALK
	· · · · ·	•		·

Test Section Patially Saturated

None

None

0.12

INSI ⁻	<u>tu te</u>	<u>ESTIN</u>	<u>G - Per</u>	rmeabi	lity (Bo	orehole				Form INS Sheet 2 -	5005 Test
Project Client	Aqui WSF	nd Draina	ge Design ed	Additiona	al GI			Borehole Project I Test No Date	No	BH40 PE201677 I 19/11/2020	0
	Tast Day										
	Time	Measure	Relative	Ht (m)	ΛH (m)	Time	Measure	Relative	Ht (m)	AH (m)	
	(mins)	d Depth (m)	Depth (m bgl)		2.1 ()	(mins) d Depth (m)	Depth (m bgl)			
	0.0	1.20	0.75	14.25	0.00						
	0.5	1.80	1.35	13.65	0.96						
	1.0	2.16	1.71	13.29	0.93						
	1.5	2.32	1.87	13.13	0.92						
	2.0	2.36	1.91	13.09	0.92						
	2.5	2.42	1.97	13.03	0.91						
	3.0	2.47	2.02	12.98	0.91						
	3.5	2.47	2.02	12.98	0.91						
	4.0	2.49	2.04	12.96	0.91						
	4.5	2.52	2.07	12.93	0.91						
	5.0	2.60	2.15	12.85	0.90						
	6.0	2.60	2.15	12.85	0.90						
	7.0	2.60	2.15	12.85	0.90						
	8.0	2.60	2.15	12.85	0.90						
	9.0	2.60	2.15	12.85	0.90						
	10.0	2.60	2.15	12.85	0.90						
	15.0	2.63	2.18	12.82	0.90						
	20.0	2.66	2.21	12.79	0.90						
	30.0	2.70	2.25	12.75	0.89						
					Time	(minutes)					
(0	5	10	1	15	20		25	30	3	5
14.4											İ
14.2	•										
14.0 -											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

NB. Borehole collapsed from 3.20m back to 2.60m during the test.

INSITU	J TESTING - Permeability (Borehole)	Sheet 3 - I	Form INS005 Rev 6 nterpretation of Results (Page 1)
Project	Aquind Drainage Design Additional GI	Borehole	BH40
		Project No	PE201677
		Test No	1.000
Client	WSP UK Limited	Date	19/11/2020

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	14.25	1.00	9.0	12.85	0.90	× /		
0.5	13.65	0.96	10.0	12.85	0.90			
1.0	13.29	0.93	15.0	12.82	0.90			
1.5	13.13	0.92	20.0	12.79	0.90			
2.0	13.09	0.92	30.0	12.75	0.89			
2.5	13.03	0.91						
3.0	12.98	0.91						
3.5	12.98	0.91						
4.0	12.96	0.91						
4.5	12.93	0.91						
5.0	12.85	0.90						
6.0	12.85	0.90						
7.0	12.85	0.90						
8.0	12.85	0.90						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU	TESTING - Permeab	ility (Borehole)	Form INS005 Rev 6 Sheet I - Test Details and Measured Values			
Project	Aquind Drainage Design Additiona	I GI	Borehole	BH40		
			Project No	PE201677		
			Test No	2		
Client	WSP UK Limited		Date	19/11/2020		
Water Peri	meability Test in a Borehole u	sing Open Systems in accord	ance with BS	5 EN ISO 22282-2:201		
Borehole D	etails	Test Details				
Inclination	Vertical	Test Type	Variable	e Head - Falling		
Method of D	rilling Dynamic Sampling	Hydrogeological Conditi	ons Test Se	ction Patially Saturated		

Type of Filter

Isolation Device

Test Section Dia. (m)

None

None

0.12

Top of

Casing

15.00

I.40

Datum =

below GL

(m) =

Length of Test

Section (m)

=

15.45 m

1.20 m

14.25 m

0.90 m

7.0 mins

Depth to Standing Water

Standing WL

				Measuring Tube Dia. (m) 0.12
Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / A Datum above GL (m) = -0.45
(minutes)	(m)	(minutes)	(m)	
0.0	1.20			
0.5	1.78			Depth to top
1.0	2.14			of Test Section
1.5	2.32			Depth to bottom of Test Section)=
2.0	2.40			below GL (m)= 1.80
2.5	2.43			Before 3.20
3.0	2.48			After 2.60
3.5	2.49			
4.0	2.50			
4.5	2.55			Ů V
5.0	2.60			
6.0	2.60			
7.0	2.60			
				Depth to Standing Water Level below Datum Depth to Induced Water Level below Datum Differential head at start of Test (H _o) Differential Head at end of Test (H _t) Time Elapsed at end of test (t _t) Weather during Test Test Carried Out By CJ Test Checked By AS Description of Test Section Structure

Co-ordinates (m)

Level (m OD)

E 467041.0

N113142.6

67.18

Structureless CHALK

geotechnical and geoenvironmental apecialists

		nd Draina	G - Per	Addition	lity (Bo	rehole)		Dauchal		Sheet 2 - Test
ient	WSP	PUK Limit	ed					Borehole Project N Test No Date	No	PE201677 2 19/11/2020
	Test Res	ults								
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)
	0.0	1.20	0.75	14.25	0.00					
-	0.5	1.78	1.33	13.67	0.96					
	1.0	2.14	1.69	13.31	0.93					
	1.5	2.32	I.87	13.13	0.92					
	2.0	2.40	1.95	13.05	0.92					
	2.5	2.43	1.98	13.02	0.91					
	3.0	2.48	2.03	12.97	0.91					
	3.5	2.49	2.04	12.96	0.91					
	4.0	2.50	2.05	12.95	0.91					
	4.5	2.55	2.10	12.90	0.91					
	5.0	2.60	2.15	12.85	0.90					
-	6.0	2.60	2.15	12.85	0.90					
	7.0	2.60	2.15	12.85	0.90					
-										
Į										
0)	1	2	3	l ime (4	5	6	7	8
14.4	,									
14.2										
e ^{13.8}										
j 13.6	•									
1 3.4										

•

13.2

13.0

12.8 12.6

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

.

NB. Borehole collapsed from 3.20m back to 2.60m during the test.

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH40		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	19/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	14.25	1.00						
0.5	13.67	0.96						
1.0	13.31	0.93						
1.5	13.13	0.92						
2.0	13.05	0.92						
2.5	13.02	0.91						
3.0	12.97	0.91						
3.5	12.96	0.91						
4.0	12.95	0.91						
4.5	12.90	0.91						
5.0	12.85	0.90						
6.0	12.85	0.90						
7.0	12.85	0.90						

Remarks and Additional Information Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeability (B	orehole)	Sheet I - Test Detail	Form INS005 Rev 6 Is and Measured Values
Project	Aquind Drainage Design Additional GI	Boreho	le BH4	41
		Test No	1NO PEZ 0	.016//
Client	WSP UK Limited	Date	18/	11/2020
Water F	Permeability Test in a Borehole using Op	en Systems in accordance w	ith BS EN ISC) 22282-2:201
Borehol	e Details	Test Details		

Borenole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467129.6
	N 3695.4
Level (m OD)	90.27

Test Type		Variable Head - Falling				
Hydrogeological	Conditions	Test Section Patially Saturated				
Type of Filter		None				
Isolation Device		None				
Test Section Dia.	(m)	0.12				
Measuring Tube I	Dia. (m)	0.12				
Height of Datum ab (m) (negative value	Casing / ove GL = -0.15 if above ground)	≺	Datum = Top of Casing			
Depth to bottom of Test Section below GL (m)= Before 5.50 After 5.50	Depth to top of Test Section below GL (m)= 4.50		Depth to Standing Water below GL (m) = 5.50 V V Standing WL			
	,	· · · · · · · · · · · · · · · · · · ·	Length of Test Section (m) = 1.00			
Daarda ee Georgijaan	\		5 (5			
Depth to Standing	Water Level be		2.65 m			
Differential head at	start of Test (F	10w Datum 3.56 m				
Differential Head a	t end of Test (H	9, 1,)	0.80 m			
Time Elapsed at en	d of test (t _f)	.,	30.0 mins			
Weather during	Test		50.0 mm3			
Test Carried Out	t By	CI				
Test Checked By		AS				
Description of Te	est Section	Structureless CHALK.				

Geotechnics

Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	
(minutes)	(m)	(minutes)	(m)	
0.0	3.56			
0.5	3.85			
1.0	3.99			_
1.5	4.04			D
2.0	4.14			b
2.5	4.17			Be
3.0	4.17			Af
3.5	4.20			
4.0	4.24			
5.0	4.28			
6.0	4.34			
7.0	4.37			
8.0	4.40			
9.0	4.46			
10.0	4.48			De
15.0	4.59			De
20.0	4.68			Di
30.0	4.85			Di
				Ti
				W
				Τe
				Τe
				D

geotechnical and geoenvironmental specialists

Project	Aqui	Aquind Drainage Design Additional GI							Borehole Project No		BH41 PE201677		
Client	WSP UK Limited							Test No Date		 8/ /202	20		
	Test Res	ults											
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	Tim (min	ne is)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	3.56	3.41	2.09	0.00								
	0.5	3.85	3.70	1.80	0.86								
	1.0	3.99	3.84	1.66	0.79								
	1.5	4.04	3.89	1.61	0.77								
	2.0	4.14	3.99	1.51	0.72								
	2.5	4.17	4.02	I.48	0.71								
	3.0	4.17	4.02	I.48	0.71								
	3.5	4.20	4.05	1.45	0.69								
	4.0	4.24	4.09	1.41	0.67								
	5.0	4.28	4.13	1.37	0.66								
	6.0	4.34	4.19	1.31	0.63								
	7.0	4.37	4.22	1.28	0.61								
	8.0	4.40	4.25	1.25	0.60								
	9.0	4.46	4.31	1.19	0.57								
	10.0	4.48	4.33	1.17	0.56								
	15.0	4.59	4.44	1.06	0.51								
	20.0	4.68	4.53	0.97	0.46	_							
	30.0	4.85	4.70	0.80	0.38								
						_							
			I		Tim	ie (mi	nutes)						I
	0	5	10		15		2	0		25	30		35
2.5 -													
2.0	•												-
2.5 -													

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)		
Project	Aquind Drainage Design Additional GI	Borehole	BH41	
		Project No	PE201677	
		Test No	1.000	
Client	WSP UK Limited	Date	18/11/2020	

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	2.09	1.00	10.0	1.17	0.56	1			
0.5	1.80	0.86	15.0	1.06	0.51	1			
1.0	1.66	0.79	20.0	0.97	0.46	1			
1.5	1.61	0.77	30.0	0.80	0.38	1			
2.0	1.51	0.72							
2.5	1.48	0.71							
3.0	1.48	0.71							
3.5	1.45	0.69							
4.0	1.41	0.67							
5.0	1.37	0.66							
6.0	1.31	0.63							
7.0	1.28	0.61							
8.0	1.25	0.60							
9.0	1.19	0.57							

Type of Test	Variable Head - Falling		
Depth to Standing Water			
Level	5.65	m	
Depth to Induced Water			
Level	3.56	m	
Differential head at start $(H_{o)}$			
	2.09	m	
Diameter of Test Section	0.12	m	
Diameter of Measuring Tube	0.12	m	
Test Length (L)	1.00	m	
Area of Test Section (As)	1.13E-02	m ²	
Area of Measuring Tube (Af)	1.13E-02	m ²	

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.230	
Time (t1)	3.00	mins
Time (t2)	30.00	mins
Head at Time t1 (H1)	1.480	m
Head at Time t2 (H2)	0.800	m
Permeability (k) =	1 93E-06	mlsoc
A/(F[t2-	1.732-00	III/SEC

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeab	oility (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Addition	al GI	Borehole	BH41
			Project No	PE201677
			Test No	2
Client	WSP UK Limited		Date	18/11/2020
Water P	ermeability Test in a Borehole (using Open Systems in acc	cordance with BS	EN ISO 22282-2:201
Borehole	e Details	Test Details		
Inclination	N Vertical	Test Type	Variable	e Head - Falling

Test Meas	urements				
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = -((negative value if above ground	0. I ^{d)}
(minutes)	(m)	(minutes)	(m)		
0.0	3.30				
0.5	3.80			Depth to) to
1.0	3.94			of lest Se	et I (
1.5	3.96			Depth to bottom of Test Section)=	- (
2.0	4.08			below GL (m)= 4.50	
2.5	4.14			Before 5.50	
3.0	4.18			After 5.50	
3.5	4.23				
4.0	4.26				
5.0	4.32				
6.0	4.40				
7.0	4.46				
8.0	4.51			↓ _	
9.0	4.54				
10.0	4.55			Depth to Standing Water Lev	vel
15.0	4.63			Depth to Induced Water Lev	el
20.0	4.73			Differential head at start of T	es
30.0	4.97			Differential Head at end of T	es
40.0	5.14			Time Elapsed at end of test (t _f)
50.0	5.27			Weather during Test	
				Test Carried Out By	
				Test Checked By Description of Test Sectio	on

Dynamic Sampling

E 467129.6

N I I 3695.4

90.27

Method of Drilling

Co-ordinates (m)

Level (m OD)

<u>INSI</u>	τυ τε	STIN	G - Per	meabi	lity (Bo	ore	ehole)				Form INS0 Sheet 2 - Te	05 Rev est Resu
Project	Aqui	nd Draina	ge Design	Additiona	al GI				Borehole Project N Test No	No	BH41 PE201677 2	
Client	VV 3F		eu						Date		10/11/2020	
	Test Res	sults										
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	ΔH (m)	
	(mins)	d Depth (m)	Depth (m bgl)				(mins)	d Depth (m)	Depth (m bgl)			
	0.0	3.30	3.15	2.35	0.00							
	0.5	3.80	3.65	1.85	0.79							
	1.0	3.94	3.79	1.71	0.73							
	1.5	3.96	3.81	1.69	0.72							
	2.0	4.08	3.93	1.57	0.67							
	2.5	4.14	3.99	1.51	0.64							
	3.0	4.18	4.03	1.47	0.63							
	3.5	4.23	4.08	1.42	0.60							
	4.0	4.26	4.11	1.39	0.59							
	5.0	4.32	4.17	1.33	0.57							
	6.0	4.40	4.25	1.25	0.53							
	7.0	4.46	4.31	1.19	0.51							
	8.0	4.51	4.36	1.14	0.49							
	9.0	4.54	4.39	1.11	0.47							
	10.0	4.55	4.40	1.10	0.47							
	15.0	4.63	4.48	1.02	0.43							
	20.0	4.73	4.58	0.92	0.39							
	30.0	4.97	4.82	0.68	0.29							
	40.0	5.14	4.99	0.5 I	0.22							
	50.0	5.27	5.12	0.38	0.16							
					Time	(mi	nutes)					
25	0	10		20		30		40		50	60	
2.0	•											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	18/11/2020		

Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho									
0.0	2.35	1.00		10.0	1.10	0.47													
0.5	1.85	0.79		15.0	1.02	0.43													
1.0	1.71	0.73		20.0	0.92	0.39													
1.5	1.69	0.72		30.0	0.68	0.29													
2.0	1.57	0.67		40.0	0.51	0.22													
2.5	1.51	0.64		50.0	0.38	0.16													
3.0	1.47	0.63																	
3.5	1.42	0.60]														
4.0	1.39	0.59							1	1		1							
5.0	1.33	0.57																	
6.0	1.25	0.53																	
7.0	1.19	0.51																	
8.0	1.14	0.49																	
9.0	1.11	0.47	Į				1												

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	5.65	m
Depth to Induced Water		
Level	3.30	m
Differential head at start $(H_{o)}$		
	2.35	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.00	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH	
Shape factor (F)	2.230		
Time (t1)	7.00	mins	
Time (t2)	30.00	mins	
Head at Time tI (HI)	1.190	m	
Head at Time t2 (H2)	0.680	m	
Permeability (k) =	2 06E-06	mlsoc	
A/(F[t2-	2.00E-00	m/sec	

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	TESTING - Permeabili	ty (Borehole)	Form INS Sheet I - Test Details and Mea		
Project A	Aquind Drainage Design Additional (GI	Borehole	BH41	
			Project No	PE201677	
			Test No	3	
Client V	WSP UK Limited		Date	18/11/2020	
water Pern	neadility Test in a Borenole usi	ng Open Systems in acco	rdance with BS	EN ISO 22282-2:201	
Borehole D	etails	Test Details			
Inclination	Vertical	Test Type	Variable	e Head - Falling	
Method of Dr	rilling Dynamic Sampling	Hydrogeological Conc	litions Test See	st Section Patially Saturated	
a					

Co-ordinates	(m)	E 467129.6							
		N 3695.4							
Level (m OD))	90.27							
Test Measurements									
			Depth of						

Test Type	Variable Head - Falling
Hydrogeological Conditions	Test Section Patially Sat
Type of Filter	None
Isolation Device	None
Test Section Dia. (m)	0.12
Measuring Tube Dia. (m)	0.12

Test Meas	urements								
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Datum a (m) (negative value	F Casing / bove GL) = -0.15 e if above ground)			Datum =	Top of Casing
(minutes)	(m)	(minutes)	(m)	7		Y.	T	Depth to	
0.0	3.40							Standing	
0.5	3.77				Depth to top			Water	
1.0	3.87				of Test Section			(m) =	5.50
1.5	3.98			Depth to bottom)=				
2.0	4.09			below GL (m)=	4.50			🖌 Standi	ng WL
2.5	4.10			Before 5.50					
3.0	4.17			After 5.50					
3.5	4.23								
4.0	4.26					i i			
5.0	4.30					v 📗			
6.0	4.36						 ↑	Length of Test Section	1
7.0	4.40							(m) =	1.00
8.0	4.44			<u>\</u>	<u> </u>		ļ į		
9.0	4.49								
10.0	4.50			Depth to Standing	g Water Level be	low Dat	um	5.65	m
15.0	4.59			Depth to Induced	Water Level be	low Dat	um	3.40) m
20.0	4.69			Differential head a	at start of Test (I	H _{o)}		2.25	m
30.0	4.88			Differential Head	at end of Test (H	H _f)		0.77	′ m
				Time Elapsed at e	nd of test (t _f)			30.0) mins
				Weather during	Test				
				Test Carried Ou	ut By	CJ			
				Test Checked B	у	AS			
				Description of T	est Section	Struct	ureles	ss Chalk	

roject	Aquind Drainage Design Additional GI Borehole Project No Tost No										
lient	WSF	PUK Limit	ed						Date		18/11/2020
	Test Res	sults									
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	ΔH (m)
	(mins)	d Depth (m)	Depth (m bgl)				(mins)	d Depth (m)	Depth (m bgl)		
	0.0	3.40	3.25	2.25	0.00						
	0.5	3.77	3.62	1.88	0.84						
	1.0	3.87	3.72	1.78	0.79						
	1.5	3.98	3.83	1.67	0.74						
	2.0	4.09	3.94	1.56	0.69						
	2.5	4.10	3.95	1.55	0.69						
	3.0	4.17	4.02	1.48	0.66						
	3.5	4.23	4.08	1.42	0.63						
	4.0	4.26	4.11	1.39	0.62						
	5.0	4.30	4.15	1.35	0.60						
	6.0	4.36	4.21	1.29	0.57						
	7.0	4.40	4.25	1.25	0.56						
	8.0	4.44	4.29	1.21	0.54						
	9.0	4.49	4.34	1.16	0.52						
	10.0	4.50	4.35	1.15	0.51						
	15.0	4.59	4.44	1.06	0.47						
	20.0	4.69	4.54	0.96	0.43						
	30.0	4.88	4.73	0.77	0.34						
	<u> </u>				Time	/ L	tes)				
(0	5	10		15	(20		25	30	35
2.5											
20											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)		
Project	Aquind Drainage Design Additional GI	Borehole	BH41	
		Project No	PE201677	
		Test No	3.000	
Client	WSP UK Limited	Date	18/11/2020	

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	2.25	1.00	10.0	1.15	0.51	1			
0.5	1.88	0.84	15.0	1.06	0.47	1			
1.0	1.78	0.79	20.0	0.96	0.43	1			
1.5	1.67	0.74	30.0	0.77	0.34	1			
2.0	1.56	0.69							
2.5	1.55	0.69							
3.0	1.48	0.66							
3.5	1.42	0.63							
4.0	1.39	0.62							
5.0	1.35	0.60							
6.0	1.29	0.57				1			
7.0	1.25	0.56				1			
8.0	1.21	0.54							
9.0	1.16	0.52							

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	5.65	m
Depth to Induced Water		
Level	3.40	m
Differential head at start $(H_{o)}$		
	2.25	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.00	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.230	
Time (t1)	4.00	mins
Time (t2)	30.00	mins
Head at Time tI (HI)	1.390	m
Head at Time t2 (H2)	0.770	m
Permeability (k) =	1 92E-06	mlsoc
A/(F[t2-	1.722-00	III/Sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

ΙΝSΙΤΙ	J TESTING - Permeability (Borehole)	Sheet I -	Form INS005 Rev 6 Sheet I - Test Details and Measured Values				
Project	Aquind Drainage Design Additional GI	Borehole	BH41				
		Project No	PE201677				
		Test No	I				
Client	WSP UK Limited	Date	17/11/2020				
Water Permeability Test in a Borehole using Open Systems in accordance with BS EN ISO 22282-2:2012							

Test Details

Depth of

Water below

Top of Casing

(continued)

(m)

Elapsed Time

(Continued)

(minutes)

Borehole Details	
Inclination	Vertical
Method of Drilling	Rotary Coring
Co-ordinates (m)	E 467129.6
	N 3695.4
Level (m OD)	90.27

Test Measurements

Elapsed Time

(minutes)

0.0

0.5

١.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.0

8.0

9.0

10.0

15.0

20.0

30.0

Depth of

Water below

Top of Casing

(m)

2.00

2.30

3.33

3.68

3.85

3.99

4.18

4.28

4.45

4.55

4.59

4.78

4.82

4.94

5.07

5.16

5.29

5.37

5.46

Test Type		Variable Head - Falling					
Hydrogeological Co	onditions	Test Section Patially Saturated					
Type of Filter		None					
Isolation Device		None					
Test Section Dia. (r	n)	0.12					
Measuring Tube Dia	a. (m)	0.12					
Height of Ca Datum abov (m) = (negative value if ab	sing / e GL -0.15 ove ground)	<u></u>	Da	atum =	Top of Casing		
\uparrow		North R		Depth to			
		1		Standing			
D	epth to top			Water			
of	Test Section			(m) =	7 00		
Depth to bottom	elow GL (m)=			()	7.00		
of Test Section)-			المسمع			
Delow GL (m)=	6.00		<u> </u>	Standi	ng vv∟		
After 7.00			-∧ L - Te - - - -	Length of test Section (m) =	1.00		
Depth to Standing Wa	ater Level be	low Datu	ım	7.15	m		
Depth to Induced Wa	low Datu	m					
Differential head at st	art of Test (H	H _{o)} 5.15 m					
Differential Head at e	nd of Test (H	H _f)		9.69	m		
Time Elapsed at end c	of test (t _f)			30.0	mins		
Weather during Te	st						
Test Carried Out B	у	CJ					
Test Checked By		AS					
Description of Test	Section	Structu	ral CH	ALK			

GCO geotechnical ar	-NIC
a	

INSI	τυ τε	STIN	G - Per	meabi	lity (Bo	orehol	e)				Form INS Sheet 2 - 1
roject	Aquind Drainage Design Additional GI Borehole										
									Project I	No	PE201677
	14/07								Test No		
lient	VV3F	' UK Limit	ed						Date		17/11/2020
	Test Res	ults	I	1	I			1	I	r	T 1
	Time	Measure	Relative	Ht (m)	∆H (m)	Tim	ne	Measure	Relative	Ht (m)	∆H (m)
	(mins)	d Depth	Depth			(min	ıs)	d Depth	Depth		
		(m)	(m bgi)					(m)	(m bgi)		
	0.0	2.00	l.85	5.15	0.00						
	0.5	2.30	2.15	4.85	0.94						
	1.0	3.33	3.18	3.82	0.74						
	1.5	3.68	3.53	3.47	0.67						
	2.0	3.85	3.70	3.30	0.64						
	2.5	3.99	3.84	3.16	0.61						
	3.0	4.18	4.03	2.97	0.58						
	3.5	4.28	4.13	2.87	0.56						
	4.0	4.45	4.30	2.70	0.52						
	4.5	4.55	4.40	2.60	0.50						
	5.0	4.59	4.44	2.56	0.50						
	6.0	4.78	4.63	2.37	0.46						
	7.0	4.82	4.67	2.33	0.45						
	8.0	4.94	4.79	2.21	0.43						
	9.0	5.07	4.92	2.08	0.40						
	10.0	5.16	5.01	1.99	0.39						
	15.0	5.29	5.14	1.86	0.36						
	20.0	5.37	5.22	1.78	0.35						
	30.0	5.46	5.31	1.69	0.33						
					Time	(minutes)					
(0	5	10	I	15	2	0		25	30	35
0.0											
5.0	•										
	–										

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	1.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	5.15	1.00	9.0	2.08	0.40			
0.5	4.85	0.94	10.0	1.99	0.39			
1.0	3.82	0.74	15.0	1.86	0.36			
1.5	3.47	0.67	20.0	1.78	0.35			
2.0	3.30	0.64	30.0	1.69	0.33			
2.5	3.16	0.61						
3.0	2.97	0.58						
3.5	2.87	0.56						
4.0	2.70	0.52						
4.5	2.60	0.50						
5.0	2.56	0.50						
6.0	2.37	0.46						
7.0	2.33	0.45						
8.0	2.21	0.43						

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	7.15	m
Depth to Induced Water		
Level	2.00	m
Differential head at start (H _{o)}		
	5.15	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.00	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.230	
Time (t1)	1.50	mins
Time (t2)	10.00	mins
Head at Time tI (HI)	3.470	m
Head at Time t2 (H2)	1.990	m
Permeability (k) =	5 53E-06	mlsoc
A/(F[t2-	3.33E-00	111/360

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet I - Test Details and Measured Values			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	2		
Client	WSP UK Limited	Date	17/11/2020		
Water P	Permeability Test in a Borehole using Open Systems in ad	ccordance with BS	EN ISO 22282-2:20		

Borehole Details		
Inclination	Vertical	
Method of Drilling	Rotary Coring	
Co-ordinates (m)	E 467129.6	
	N 3695.4	
Level (m OD)	90.27	

r

Test Details							
Test Type	Variable Head - Falling						
Hydrogeological Conditions	Test Section Patially Saturated						
Type of Filter	None						
Isolation Device	None						
Test Section Dia. (m)	0.12						
Measuring Tube Dia. (m)	0.12						
Height of Casing / Datum above GL (m) = -0.1 (negative value if above ground)	5						
Depth to bottom of Test Section below GL (m)= 6.00 After 7.00	Depth to Standing Water below GL (m) = 7.00 ✓ ✓ Standing WL – ✓ Length of Test Section (m) = 1.00						
Depth to Standing Water Level	below Datum 7.15 m						
Depth to Induced Water Level	below Datum 2.00 m						
Differential head at start of Tes	$t(H_{o})$ 5.15 m						
Differential Head at end of Tes	t (H _f) 9.57 m						
Time Elapsed at end of test (t _f)	30.0 mins						
Weather during Test							
Test Carried Out By	CI						
Test Checked By	AS						
	Structureless CHALK						

Test Meas	urements					
Elapsed Time	Depth of Water below Top of Casing		Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)		
(minutes)	(m)		(minutes)	(m)		
0.0	2.00					
0.5	2.57					
1.0	3.39					
1.5	3.72				De	pt T
2.0	3.80				be	lo
2.5	4.02] [Bef	or
3.0	4.07				Afte	er
3.5	4.17					
4.0	4.32					
4.5	4.42					
5.0	4.49					
6.0	4.63					
7.0	4.74					
8.0	4.87					
9.0	4.99				Dep	otł
10.0	5.05				Dep	otł
15.0	5.37				Diff	er
20.0	5.40				Diff	er
30.0	5.58				Tim	ıe
					We	eat
					Tes	st
] [Tes	st
] [De	sc
		1				
		1 [
		<u> </u>				

Project	Aqui	Aquind Drainage Design Additional GI									Borehole Project No Test No		7
Client	WSF	WSP UK Limited										17/11/2020	
	Test Res	Test Results											
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH	(m)	Tim (min	ne is)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	2.00	l.85	5.15	0.	00							
	0.5	2.57	2.42	4.58	0.	89							
	1.0	3.39	3.24	3.76	0.	73							
	1.5	3.72	3.57	3.43	0.	67							
	2.0	3.80	3.65	3.35	0.	65							
	2.5	4.02	3.87	3.13	0.	61							
	3.0	4.07	3.92	3.08	0.	60							
	3.5	4.17	4.02	2.98	0.).58							
	4.0	4.32	4.17	2.83	0.	55							
	4.5	4.42	4.27	2.73	0.	53							
	5.0	4.49	4.34	2.66	0.	52							
	6.0	4.63	4.48	2.52	0.	49							
	7.0	4.74	4.59	2.41	0.	47							
	8.0	4.87	4.72	2.28	0.	44							
	9.0	4.99	4.84	2.16	0.	42							
	10.0	5.05	4.90	2.10	0.	41							
	15.0	5.37	5.22	1.78	0.	35							
	20.0	5.40	5.25	1.75	0.	34							
	30.0	5.58	5.43	1.57	0.	30							
						Time (m	inutes)						
	0	5	10		15	5	2	0		25	30		35
6.0													٦
50	•												
0.0	•												

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page 1)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	5.15	1.00	9.0	2.16	0.42	1			
0.5	4.58	0.89	10.0	2.10	0.41	1			
1.0	3.76	0.73	15.0	1.78	0.35	1			
1.5	3.43	0.67	20.0	1.75	0.34	1			
2.0	3.35	0.65	30.0	1.57	0.30				
2.5	3.13	0.61							
3.0	3.08	0.60							
3.5	2.98	0.58							
4.0	2.83	0.55							
4.5	2.73	0.53							
5.0	2.66	0.52							
6.0	2.52	0.49							
7.0	2.41	0.47							
8.0	2.28	0.44							

Type of Test	Variable Head - Falling			
Depth to Standing Water				
Level	7.15	m		
Depth to Induced Water				
Level	2.00	m		
Differential head at start (H _{o)}				
	5.15	m		
Diameter of Test Section	0.12	m		
Diameter of Measuring Tube	0.12	m		
Test Length (L)	1.00	m		
Area of Test Section (As)	1.13E-02	m ²		
Area of Measuring Tube (Af)	1.13E-02	m ²		

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.230	
Time (t1)	1.50	mins
Time (t2)	15.00	mins
Head at Time t1 (H1)	3.430	m
Head at Time t2 (H2)	1.780	m
Permeability (k) =	4 L LE-06	mlsoc
A/(F[t2-	4.112-00	III/SEC

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

	LSTING - Termeduling (Dorein	Sheet I -	Test Details and Measured Values
Project Aqu	und Drainage Design Additional GI	Borehole	BH41
		Project No	PE201677
		Test No	3
Client WS	P UK Limited	Date	17/11/2020
Water Perme	ability Test in a Borehole using Open Sys	stems in accordance with BS	EN ISO 22282-2:2

Borehole Details		
Inclination	Vertical	
Method of Drilling	Rotary Coring	
Co-ordinates (m)	E 467129.6	
	N 3695.4	
Level (m OD)	90.27	

Test Measurements

Test Details						
Test Туре	Variable Head - Falling					
Hydrogeological Conditions	Test Section Patially Saturated					
Type of Filter	None					
Isolation Device	None					
Test Section Dia. (m)	0.12					
Measuring Tube Dia. (m)	0.12					
Height of Casing / Datum above GL (m) = -0.15 (negative value if above ground)	Datum = Top of Casing					

Depth to top

of Test Section

Depth to Standing Water

below GL

Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	He Da (nega
(minutes)	(m)	(minutes)	(m)	
0.0	2.00			
0.5	3.10			
1.0	3.56			
1.5	3.86			Depth to be
2.0	4.04			below GL
2.5	4.28			Before 7.0
3.0	4.43			After 7.0
3.5	4.55			
4.0	4.71			
4.5	4.82			
5.0	4.91			
6.0	5.10			
7.0	5.16			
8.0	5.27			
9.0	5.37			Depth to St
10.0	5.42			Depth to In
15.0	5.57			Differential
20.0	5.73			Differential
30.0	5.96			Time Elapse
40.0	6.19			Weather d
50.0	6.26			Test Carri
				Test Chec
				Descriptio

Project Client	Aqui WSP	nd Drainaş ' UK Limit	ge Design ed	Borehole Project No Test No Date		BH41 PE201677 3 17/11/2020					
	Test Res	ults									
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)
	0.0	2.00	I.85	5.15	0.00		50.0	6.26	6.11	0.89	0.17
	0.5	3.10	2.95	4.05	0.79						
	1.0	3.56	3.41	3.59	0.70						
	1.5	3.86	3.71	3.29	0.64						
	2.0	4.04	3.89	3.11	0.60						
	2.5	4.28	4.13	2.87	0.56						
	3.0	4.43	4.28	2.72	0.53						
	3.5	4.55	4.40	2.60	0.50						
	4.0	4.71	4.56	2.44	0.47						
	4.5	4.82	4.67	2.33	0.45						
	5.0	4.91	4.76	2.24	0.43						
	6.0	5.10	4.95	2.05	0.40						
	7.0	5.16	5.01	1.99	0.39						
	8.0	5.27	5.12	1.88	0.37						
	9.0	5.37	5.22	I.78	0.35						
	10.0	5.42	5.27	1.73	0.34						
	15.0	5.57	5.42	1.58	0.31						
	20.0	5.73	5.58	1.42	0.28						
	30.0	5.96	5.81	1.19	0.23						
	40.0	6.19	6.04	0.96	0.19						
					Time	(mi	nutes)				
(0	10		20		30		40		50	60
0.0											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU TESTING - Permeability (Borehole)

INSIT	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page 1)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	3.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	5.15	1.00	9.0	1.78	0.35				
0.5	4.05	0.79	10.0	1.73	0.34	1			
1.0	3.59	0.70	15.0	1.58	0.31	1			
1.5	3.29	0.64	20.0	1.42	0.28	1			
2.0	3.11	0.60	30.0	1.19	0.23				
2.5	2.87	0.56	40.0	0.96	0.19				
3.0	2.72	0.53	50.0	0.89	0.17				
3.5	2.60	0.50							
4.0	2.44	0.47							
4.5	2.33	0.45							
5.0	2.24	0.43				1			
6.0	2.05	0.40							
7.0	1.99	0.39							
8.0	1.88	0.37							

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	7.15	m
Depth to Induced Water		
Level	2.00	m
Differential head at start $(H_{o)}$		
	5.15	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.00	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.233	
Time (t1)	5.00	mins
Time (t2)	50.00	mins
Head at Time tI (HI)	2.240	m
Head at Time t2 (H2)	0.890	m
Permeability (k) =	1 73E-06	misoc
A/(F[t2-	1.732-00	III/SEC

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeability (Bo	orehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additional GI	B	orehole	BH41
		Р	roject No	PE201677
		Т	est No	l
Client	WSP UK Limited	C	Date	18/11/2020
Water F	ermeability Test in a Borehole using Oper	ו Systems in accorda	nce with BS	EN ISO 22282-2:201
Borehol	e Details	est Details		

Borenole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467129.6
	N 3695.4
Level (m OD)	90.27

Test Type		Varia	ıble H	Head - Falling	
Hydrogeological Condit	ions	Test	Secti	on Patially Sa	turated
Type of Filter		Non	е		
Isolation Device		Non	е		
Test Section Dia. (m)		0.12			
Measuring Tube Dia. (m	ı)	0.12			
Height of Casing / Datum above GL (m) = (negative value if above gro	/ - 0.15 ound)	×>		Datum =	Top of Casing
Depth to bottom of Test Section below GL (m)= 4. Before 5.50 After 5.50	to top Section GL (m = 50			Depth to Standing Water below GL (m) = / Standi - / Standi -	15.00 ng WL 1.00
Depth to Standing Water	Level be	low Da	atum	15.15	ōm
Depth to Induced Water L	_evel bel	ow Da	tum	3.56	6 m
Differential head at start o	f Test (H	H _{o)}		11.59	€ m
Differential Head at end of	f Test (H	l _f)		10.30) m
Time Elapsed at end of tes	t (t _f)			30.0) mins
Weather during Test Test Carried Out By		CJ			

AS

Structureless CHALK.

geotechnical and geoenvironmental specialists

Test Meas	urements					
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)		Height of Datum a (m) (negative value	Casing / bove GL) = -0.15 e if above ground)
(minutes)	(m)	(minutes)	(m)		/	
0.0	3.56					
0.5	3.85					Depth to top
1.0	3.99			_		of Test Section
1.5	4.04			Depth of Ter	to bottom)=
2.0	4.14			below	GL (m)=	4.50
2.5	4.17			Before	5.50	
3.0	4.17			After	5.50	
3.5	4.20					
4.0	4.24					
5.0	4.28					
6.0	4.34					
7.0	4.37					
8.0	4.40				١	/
9.0	4.46				-	·
10.0	4.48			Depth	to Standing	Water Level be
15.0	4.59			Depth	to Induced	Water Level be
20.0	4.68			Differe	ntial head a	it start of Test (I
30.0	4.85			Differe	ntial Head	at end of Test (H
				Time E	lapsed at ei	nd of test (t _f)
				Weath	ner during	Test
				Test C	Carried Ou	ıt By
				Test C	hecked B	у
				Descri	ption of T	est Section

INSI	τυ τε	ESTIN	G - Per	rmeabi	lity (Bo	oreh	ole)				Sheet 2	- Test Resul
Project	ect Aquind Drainage Design Additional GI						Borehole Project No Test No		BH41 PE201677 I			
Client	WSF	PUK Limit	ed						Date		18/11/202	20
	Test Res	sults										
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	ΔH (m)	
	(mins)	d Depth (m)	Depth (m bgl)			((mins)	d Depth (m)	Depth (m bgl)			
	0.0	3.56	3.41	11.59	0.00							
	0.5	3.85	3.70	11.30	0.97							
	1.0	3.99	3.84	11.16	0.96							
	1.5	4.04	3.89	11.11	0.96							
	2.0	4.14	3.99	11.01	0.95							
	2.5	4.17	4.02	10.98	0.95							
	3.0	4.17	4.02	10.98	0.95							
	3.5	4.20	4.05	10.95	0.94							
	4.0	4.24	4.09	10.91	0.94							
	5.0	4.28	4.13	10.87	0.94							
	6.0	4.34	4.19	10.81	0.93							
	7.0	4.37	4.22	10.78	0.93							
	8.0	4.40	4.25	10.75	0.93							
	9.0	4.46	4.31	10.69	0.92							
	10.0	4.48	4.33	10.67	0.92							
	15.0	4.59	4.44	10.56	0.91							
	20.0	4.68	4.53	10.47	0.90							
	30.0	4.85	4.70	10.30	0.89							
					Time	(minu	tes)					
(11.8 1	0	5	10		15		20		25	30		35 T

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	1.000		
Client	WSP UK Limited	Date	18/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	11.59	1.00	10.0	10.67	0.92			
0.5	11.30	0.97	15.0	10.56	0.91			
1.0	11.16	0.96	20.0	10.47	0.90			
1.5	11.11	0.96	30.0	10.30	0.89			
2.0	11.01	0.95						
2.5	10.98	0.95						
3.0	10.98	0.95						
3.5	10.95	0.94						
4.0	10.91	0.94						
5.0	10.87	0.94						
6.0	10.81	0.93						
7.0	10.78	0.93						
8.0	10.75	0.93						
9.0	10.69	0.92						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeal	bility (Borehole)	Sheet I -	Form INS005 Rev (Test Details and Measured Value
Project	Aquind Drainage Design Addition	nal GI	Borehole	BH41
			Project No	PE201677
			Test No	2
Client	WSP UK Limited		Date	18/11/2020
Water P	ermeability Test in a Borehole	using Open Systems in ac	cordance with BS	EN ISO 22282-2:201
Borehole	e Details	Test Details		
Inclination	Vertical	Test Type	Variable	e Head - Falling

Dynamic Sampling

E 467129.6

N I I 3695.4

90.27

Hydrogeological Conditions

Type of Filter

Isolation Device

Test Section Dia. (m)

Method of Drilling

Co-ordinates (m)

Level (m OD)

				Measuring Tube Dia. (n	n)	0.12		
Test Meas	urements				,	<u> </u>		
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing Datum above Gl (m) = (negative value if above gr	7 L -0.15 round)	<	Datum =	Top of Casing
(minutes)	(m)	(minutes)	(m)	\uparrow	7		Depth to	
0.0	3.30				1		Standing	
0.5	3.80			Depth	h to top		Water below GI	
1.0	3.94			of Test	t Section i		(m) =	15.00
1.5	3.96			Depth to bottom)=			
2.0	4.08			below GL (m)= 4	4.50		🗸 🖌 Standi	ng WL
2.5	4.14			Before 5.50	i I		-	
3.0	4.18			After 5.50	1			
3.5	4.23				1			
4.0	4.26				i I			
5.0	4.32				י ע	/		
6.0	4.40						Length of	
7.0	4.46						(m) =	I.00
8.0	4.51						/	
9.0	4.54							
10.0	4.55			Depth to Standing Water	Level belo	ow Datum	15.15	m
15.0	4.63			Depth to Induced Water	Level belo	w Datum	3.30) m
20.0	4.73			Differential head at start of	of Test (H	o)	11.85	m
30.0	4.97			Differential Head at end o	of Test (H	f)		m
40.0	5.14			Time Elapsed at end of te	est (t _f)		50.0) mins
50.0	5.27			Weather during Test				
				Test Carried Out By		CJ		
				Test Checked By		AS		
				Description of Test Sec	ction	Structure	eless CHALK	
	<u> </u>	_ <u>I</u>		<u> </u>				

Test Section Patially Saturated

None

None

0.12

Project	Aqui	nd Draina	ge Design		Borehole Project N Test No	No	BH41 PE201677 2			
Client	WSF	PUK Limit	ed					Date		18/11/2020
	Test Res	sults								
	Time	Measure	Relative	Ht (m)	∆H (m)	Time	Measure	Relative	Ht (m)	ΔH (m)
	(mins)	d Depth (m)	Depth (m bgl)			(mins)	d Depth (m)	Depth (m bgl)		
	0.0	3.30	3.15	11.85	0.00					
	0.5	3.80	3.65	11.35	0.96					
	1.0	3.94	3.79	11.21	0.95					
	1.5	3.96	3.81	11.19	0.94					
	2.0	4.08	3.93	11.07	0.93					
	2.5	4.14	3.99	11.01	0.93					
	3.0	4.18	4.03	10.97	0.93					
	3.5	4.23	4.08	10.92	0.92					
	4.0	4.26	4.11	10.89	0.92					
	5.0	4.32	4.17	10.83	0.91					
	6.0	4.40	4.25	10.75	0.91					
	7.0	4.46	4.31	10.69	0.90					
	8.0	4.51	4.36	10.64	0.90					
	9.0	4.54	4.39	10.61	0.90					
	10.0	4.55	4.40	10.60	0.89					
	15.0	4.63	4.48	10.52	0.89					
	20.0	4.73	4.58	10.42	0.88					
	30.0	4.97	4.82	10.18	0.86					
	40.0	5.14	4.99	10.01	0.84					
	50.0	5.27	5.12	9.88	0.83					
					Time (r	ninutes)				
10.0)	10		20	3	0	40		50	60

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	18/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	11.85	1.00	10.0	10.60	0.89			
0.5	11.35	0.96	15.0	10.52	0.89			
1.0	11.21	0.95	20.0	10.42	0.88			
1.5	11.19	0.94	30.0	10.18	0.86			
2.0	11.07	0.93	40.0	10.01	0.84			
2.5	11.01	0.93	50.0	9.88	0.83			
3.0	10.97	0.93						
3.5	10.92	0.92						
4.0	10.89	0.92						
5.0	10.83	0.91						
6.0	10.75	0.91						
7.0	10.69	0.90						
8.0	10.64	0.90						
9.0	10.61	0.90						

rea of Measuring Tube (Af)	1.13E-02	m ²
me at ratio H/Ho=.37 :		mins

15.15

3.30

11.85

0.12

0.12

1.00

m

m

m

m

m

m

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.230	
Time (t1)	7.00	mins
Time (t2)	30.00	mins
Head at Time tI (HI)	10.690	m
Head at Time t2 (H2)	10.180	m
Permeability (k) = A/(F[t2-	I.80E-07	m/sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU	TESTING - Permeab	lity (Borehole)	Form INS005 Rev Sheet I - Test Details and Measured Value			
Project	Aquind Drainage Design Additiona	GI	Borehole	BH41		
		F	Project No	PE201677		
		F	Fest No	3		
Client	WSP UK Limited	[Date	18/11/2020		
Borehole D	Details	Test Details				
Inclination	Vertical	Test Type	Variable	e Head - Falling		
Method of Drilling Dynamic Sampling		Hydrogeological Conditio	ns Test Se	ction Patially Saturated		
Co ordinato	c (m) E 4671296	Type of Filter	Turne of Filmen Niene			

Co-ordinates (m)	E 467129.6	
	N 3695.4	
Level (m OD)	90.27	
Test Measurement	s	

Hydrogeological Conditions Test Section F Type of Filter None Isolation Device None Test Section Dia. (m) 0.12 Measuring Tube Dia. (m) 0.12

Depth of e Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = -0.15 (negative value if above ground) (negative value f above ground) (negative f above g above
(m)	Depth to bottom of Test Section below GL (m) = 15.00 After 5.50 After 5.50
	Depth to Standing Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 3.40 m Differential head at start of Test (H _o) 11.75 m Differential Head at end of Test (H _t) m Time Elapsed at end of test (t _t) 30.0 mins Weather during Test Test Carried Out By CJ Test Checked By AS Description of Test Section Structureless Chalk

Proje

ICN		<u>25 IN</u>	G - Per	meabl		ore	enoie)				Sheet 2 - 7
roject	Aqui	ind Draina	Borehole		BH41						
									Project I	No	PE201677
									Test No		3
Client	WSF	P UK Limit	ed						Date		18/11/2020
	Test Res	sults									
	Time	Measure	Relative	Ht (m)	ΔH (m)]	Time	Measure	Relative	Ht (m)	∆H (m)
	(mins)	d Depth	Depth				(mins)	d Depth	Depth		
		(m)	(m bgl)					(m)	(m bgl)		
	0.0	3.40	3.25	11.75	0.00						
	0.5	3.77	3.62	11.38	0.97						
	1.0	3.87	3.72	11.28	0.96						
	1.5	3.98	3.83	11.17	0.95						
	2.0	4.09	3.94	11.06	0.94						
	2.5	4.10	3.95	11.05	0.94						
	3.0	4.17	4.02	10.98	0.93						
	3.5	4.23	4.08	10.92	0.93						
	4.0	4.26	4.11	10.89	0.93						
	5.0	4.30	4.15	10.85	0.92						
	6.0	4.36	4.21	10.79	0.92						
	7.0	4.40	4.25	10.75	0.91						
	8.0	4.44	4.29	10.71	0.91						
	9.0	4.49	4.34	10.66	0.91						
	10.0	4.50	4.35	10.65	0.91						
	15.0	4.59	4.44	10.56	0.90						
	20.0	4.69	4.54	10.46	0.89						
	30.0	4.88	4.73	10.27	0.87						
					Timo	/mi	nutoo)				
n)	5	10		15	(ini	20		25	30	35
12.0		-							-		
11.8 -	•										

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	3.000		
Client	WSP UK Limited	Date	18/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	11.75	1.00	10.0	10.65	0.91				
0.5	11.38	0.97	15.0	10.56	0.90	1			
1.0	11.28	0.96	20.0	10.46	0.89	1			
١.5	11.17	0.95	30.0	10.27	0.87				
2.0	11.06	0.94							
2.5	11.05	0.94							
3.0	10.98	0.93							
3.5	10.92	0.93							
4.0	10.89	0.93							
5.0	10.85	0.92							
6.0	10.79	0.92				1			
7.0	10.75	0.91							
8.0	10.71	0.91							
9.0	10.66	0.91							

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet I - Test Details and Measured Values			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	I		
Client	WSP UK Limited	Date	17/11/2020		
Water P	ermeability Test in a Borehole using Open Systems in ac	cordance with BS	EN ISO 22282-2:2012		

Depth of

Water below

Top of Casing

(continued)

(m)

Elapsed Time

(Continued)

(minutes)

Borehole Details	
Inclination	Vertical
Method of Drilling	Rotary Coring
Co-ordinates (m)	E 467129.6
	N 3695.4
Level (m OD)	90.27

Test Measurements

Elapsed Time

(minutes)

0.0

0.5

1.0

١.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

7.0

8.0

9.0

10.0 15.0

20.0

30.0

Depth of

Water below

Top of Casing

(m)

2.00

2.30

3.33

3.68

3.85

3.99

4.18

4.28

4.45

4.55

4.59

4.78

4.82

4.94

5.07 5.16

5.29

5.37

5.46

Test Details								
Test Type		Variab	le He	ead - Falling				
Hydrogeological	Conditions	Test Section Patially Saturated						
Type of Filter		None						
Isolation Device		None						
Test Section Dia	ı. (m)	0.12						
Measuring Tube	Dia. (m)	0.12						
Height of Datum al (m) (negative value	Casing / bove GL) = -0.15 e if above ground)			Datum =	Top of Casing			
Depth to bottom of Test Section below GL (m)=	Depth to top of Test Section below GL (m)= 6.00			Depth to Standing Water below GL (m) =	15.00 ng WL			
Before 7.00			¥		.8 =			
After 7.00	/	· · · · · · · · · · · · · · · · · · ·	- A	Length of Test Section (m) =	1.00			
Depth to Standing	Water Level be	low Dat	um	15.15	m			
Depth to Induced	Water Level bel	ow Dati	um	2.00	m			
Differential head a	t start of Test (H	- "		13 15	m			

<u> </u>	>	(11) - 1.00
Depth to Standing Water Level b	elow Datum	15.15 m
Depth to Induced Water Level b	elow Datum	2.00 m
Differential head at start of Test	(H _{o)}	13.15 m
Differential Head at end of Test ((H _f)	9.69 m
Time Elapsed at end of test (t_f)		30.0 mins
Weather during Test		
Test Carried Out By	CJ	
Test Checked By	AS	
Description of Test Section	Structural CH	ALK

GCO	ICCH	N	ICS
geotechnical and	i geoenvironm	ental s	pecialista

Project	Aqui	Aquind Drainage Design Additional GI									No	BH41 PE201677	BH41 PE201677 I	
Client	WSF	PUK Limit	ed							Date		17/11/202	20	
	Test Res	ults												
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Tim (min:	e s)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		
	0.0	2.00	1.85	13.15	0.00									
	0.5	2.30	2.15	12.85	0.98									
	1.0	3.33	3.18	11.82	0.90									
	1.5	3.68	3.53	11.47	0.87									
	2.0	3.85	3.70	11.30	0.86									
	2.5	3.99	3.84	11.16	0.85									
	3.0	4.18	4.03	10.97	0.83									
	3.5	4.28	4.13	10.87	0.83									
	4.0	4.45	4.30	10.70	0.81									
	4.5	4.55	4.40	10.60	0.81									
	5.0	4.59	4.44	10.56	0.80									
	6.0	4.78	4.63	10.37	0.79									
	7.0	4.82	4.67	10.33	0.79									
	8.0	4.94	4.79	10.21	0.78									
	9.0	5.07	4.92	10.08	0.77									
	10.0	5.16	5.01	9.99	0.76									
	15.0	5.29	5.14	9.86	0.75									
	20.0	5.37	5.22	9.78	0.74									
	30.0	5.46	5.31	9.69	0.74									
					Time	(mi	nutes)							
14.0	0	5	10		15		20)		25	30		35	
	† •													
12.0	••••	•••												
10.0													-	

Head, Ht (m) 8.0

6.0

4.0

2.0

0.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6 Sheet 2 - Test Results

INSITU	TESTING - Permeability (Borehole)	Sheet 3 - I	Form INS005 Rev 6 nterpretation of Results (Page 1)
Project	Aquind Drainage Design Additional GI	Borehole	BH41
		Project No	PE201677
		Test No	1.000
Client	WSP UK Limited	Date	17/11/2020

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	13.15	1.00	9.0	10.08	0.77	1			
0.5	12.85	0.98	10.0	9.99	0.76	1			
1.0	11.82	0.90	15.0	9.86	0.75	1			
1.5	11.47	0.87	20.0	9.78	0.74	1			
2.0	11.30	0.86	30.0	9.69	0.74				
2.5	11.16	0.85							
3.0	10.97	0.83							
3.5	10.87	0.83							
4.0	10.70	0.81							
4.5	10.60	0.81							
5.0	10.56	0.80				1			
6.0	10.37	0.79							
7.0	10.33	0.79							
8.0	10.21	0.78							

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additional GI	Borehole	BH41
		Project No	PE201677
		Test No	2
Client	WSP UK Limited	Date	17/11/2020
Water F	Permeability Test in a Borehole using Open Systems in a	ccordance with BS	EN ISO 22282-2:201

Depth of

Borehole Details		
Inclination	Vertical	
Method of Drilling	Rotary Coring	
Co-ordinates (m)	E 467129.6	
	N 3695.4	
Level (m OD)	90.27	

Test Measurements

Test Details			
Test Type		Variable	e Head - Falling
Hydrogeological	Conditions	Test Se	ction Patially Saturated
Type of Filter		None	
Isolation Device		None	
Test Section Dia	ı. (m)	0.12	
Measuring Tube	Dia. (m)	0.12	
Height of Datum al (m) (negative value	Casing / bove GL = -0.15 e if above ground)	∧	Datum = Top of Casing
/ Depth to bottom of Test Section below GL (m)= Before 7.00 After 7.00	Depth to top of Test Section below GL (m)= 6.00		Depth to Standing Water below GL (m) = 15.00 ✓ ✓ Standing WL

	Death of		Depth of		Determine		Ϋ́ 📗
Elapsod Timo	Depth of Water below	Elapsed Time	Water below		Datum abo	ove GL	
Liapsed Time	Top of Casing	(Continued)	Top of Casing		(m) =	= -0.15	i
	Top of Casing		(continued)		(negative value ir	above ground)	↓ 📗
(minutes)	(m)	(minutes)	(m)		\uparrow		X III
0.0	2.00						
0.5	2.57					Depth to top	
1.0	3.39				C	of Test Section below GL (m	רו ו
1.5	3.72				Depth to bottom)=	
2.0	3.80]	below GL (m)=	6.00	
2.5	4.02				Before 7.00		I
3.0	4.07				After 7.00		
3.5	4.17]			
4.0	4.32			Ī			I
4.5	4.42			Ī			v
5.0	4.49]			
6.0	4.63			Ī			
7.0	4.74			Ī			
8.0	4.87]			
9.0	4.99				Depth to Standing V	Vater Level b	elow Datum
10.0	5.05				Depth to Induced W	Vater Level be	low Datum
15.0	5.37]	Differential head at s	start of Test ((H _{o)}
20.0	5.40			Ī	Differential Head at	end of Test (H _f)
30.0	5.58			Ī	Time Elapsed at end	of test (t _f)	
				Ī	Weather during T	est	
					Test Carried Out	Ву	CJ
				Ī	Test Checked By		AS
		1		1	, Description of Tes	st Section	Structure
		┨ ┣────		┦			
				1			
				1			

Structureless CHALK

Length of **Test Section** (m) = 1.00

15.15 m

2.00 m

13.15 m

9.57 m

30.0 mins

				Addition		nenoiej		<u> </u>		Sheet 2 - T
roject	Aqu	ind Draina	Borehole	BH41						
								Project I	NO	PE2016//
liont	\ A /CE) / imit	ad					Test INO		
lient	vv3r		eu					Date		17/11/2020
	Test Res	sults	-					-		
	Time	Measure	Relative	Ht (m)	ΔH (m)	Time	Measure	Relative	Ht (m)	ΔH (m)
	(mins)	d Depth	Depth			(mins)	d Depth	Depth		
		(m)	(m bgl)				(m)	(m bgl)		
	0.0	2.00	l.85	13.15	0.00					
	0.5	2.57	2.42	12.58	0.96					
	1.0	3.39	3.24	11.76	0.89					
	1.5	3.72	3.57	11.43	0.87					
	2.0	3.80	3.65	11.35	0.86					
	2.5	4.02	3.87	11.13	0.85					
	3.0	4.07	3.92	11.08	0.84					
	3.5	4.17	4.02	10.98	0.83					
	4.0	4.32	4.17	10.83	0.82					
	4.5	4.42	4.27	10.73	0.82					
	5.0	4.49	4.34	10.66	0.81					
	6.0	4.63	4.48	10.52	0.80					
	7.0	4.74	4.59	10.41	0.79					
	8.0	4.87	4.72	10.28	0.78					
	9.0	4.99	4.84	10.16	0.77					
	10.0	5.05	4.90	10.10	0.77					
	15.0	5.37	5.22	9.78	0.74					
	20.0	5.40	5.25	9.75	0.74					
	30.0	5.58	5.43	9.57	0.73					
		1	1	1	Time	(minutes)		1	1	
C)	5	10		15	20		25	30	35
14.0	•									
12.0 -	•									
		••••								
10.0					•	•				

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6 Sheet 2 - Test Results

INSITU	TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	13.15	1.00	9.0	10.16	0.77	1			
0.5	12.58	0.96	10.0	10.10	0.77	1			
1.0	11.76	0.89	15.0	9.78	0.74				
1.5	11.43	0.87	20.0	9.75	0.74	1			
2.0	11.35	0.86	30.0	9.57	0.73				
2.5	11.13	0.85							
3.0	11.08	0.84							
3.5	10.98	0.83							
4.0	10.83	0.82							
4.5	10.73	0.82							
5.0	10.66	0.81				1			
6.0	10.52	0.80				1			
7.0	10.41	0.79							
8.0	10.28	0.78							

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additional GI	Borehole	BH41
		Project No	PE201677
		Test No	3
Client	WSP UK Limited	Date	17/11/2020
Water P	ermeability Test in a Borehole using Open Systems in a	accordance with BS	EN ISO 22282-2:20
Borobol	a Datails		

Borehole Details		
Inclination	Vertical	
Method of Drilling	Rotary Coring	
Co-ordinates (m)	E 467129.6	
	N 3695.4	
Level (m OD)	90.27	

Test Type Variable Head - Falling Hydrogeological Conditions Test Section Patially Saturated Type of Filter None Isolation Device None Test Section Dia. (m) 0.12 Measuring Tube Dia. (m) 0.12 Height of Casing / Datum above GL (mgative value f above ground) Datum = Top of Casing Depth to bottom of Test Section below GL (m)= Depth to top of Test Section below GL (m)= Before 7.00 After 7.00 6.00 Depth to Standing Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 2.00 m Differential head at start of Test (H _i) 8.96 m Time Elapsed at end of test (t _i) 50.0 mins	l est Details							
Hydrogeological ConditionsTest Section Patially SaturatedType of FilterNoneIsolation DeviceNoneTest Section Dia. (m)0.12Measuring Tube Dia. (m)0.12Height of Casing / Datum above GL (m) = -0.15Datum = Top of CasingDepth to StandingDepth to top of Test Section below GL (m) =Depth to bottom of Test Section below GL (m) =Depth to Standing WLBefore 7.00 After 7.006.00Depth to Standing Water Level below Datum15.15 m Depth to Induced Water Level below DatumDepth to Induced Water Level below Datum13.15 m Differential head at start of Test (H _i)Differential Head at end of test (t _i)50.0 minsWeather during TestStanding Test	Test Type		Varia	able H	Head - Falling			
Type of FilterNoneIsolation DeviceNoneTest Section Dia. (m)0.12Measuring Tube Dia. (m)0.12Height of Casing / Datum above GL (m) = -0.15 (negative value if above ground)Datum = Top of CasingDepth to bottom of Test Section below GL (m)= Before 7.00Depth to top e.00Depth to Standing Water below GL (m) = 15.00Depth to Standing Water Level below Datum15.15 m Depth to Induced Water Level below Datum15.15 m Depth to Induced Water Level below DatumDepth to Induced Water Level below Datum13.15 m Differential head at start of Test (H _r) Bifferential Head at end of test (t _r)0.00 mins	Hydrogeological Condi	itions	Test Section Patially Saturated					
Isolation Device None Test Section Dia. (m) 0.12 Measuring Tube Dia. (m) 0.12 Height of Casing / Datum above GL (m) = -0.15 (regative value if above ground) Depth to bottom of Test Section below GL (m) = Before 7.00 After 7.00 Depth to Standing Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 2.00 m Differential head at start of Test (H _o) 13.15 m Differential Head at end of Test (H _r) 8.96 m Time Elapsed at end of test (t _r) 50.0 mins Weather during Test	Type of Filter		Non	е				
Test Section Dia. (m) 0.12 Measuring Tube Dia. (m) 0.12 Height of Casing / Datum above GL (m) = -0.15 (negative value if above ground) Depth to bottom of Test Section below GL (m)= Before 7.00 After 7.00 Depth to Standing Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 2.00 m Differential head at start of Test (H _o) 13.15 m Differential Head at end of Test (H _i) 8.96 m Time Elapsed at end of test (t _i) 50.0 mins Weather during Test	Isolation Device		Non	e				
Measuring Tube Dia. (m) 0.12 Height of Casing / Datum above GL (m) = -0.15 (regative value if above ground) Depth to bottom of Test Section below GL (m) = Before 7.00 After 7.00 Depth to Standing Water Level below Datum Depth to Induced Water Level below Datum Depth to Induced Water Level below Datum Depth to Induced Water Level below Datum Differential head at start of Test (H _o) Time Elapsed at end of test (t _r) Weather during Test	Test Section Dia. (m)		0.12					
Height of Casing / Datum above GL (m) = -0.15 (regative value if above ground) Depth to bottom of Test Section below GL (m) = 6.00 Matter 7.00 Depth to Standing Water Level below Datum Depth to Induced Water Level below Datum Differential head at start of Test (H _c) Time Elapsed at end of test (t _r) Weather during Test	Measuring Tube Dia. (r	n)	0.12					
Depth to bottom of Test Section below GL (m) = Before 7.00 After 7.00 Depth to Standing Water Level below Datum 15.15 m Depth to Induced Water Level below Datum 2.00 m Differential Head at end of Test (H _i) 8.96 m Time Elapsed at end of test (t _i) 50.0 mins Weather during Test	Height of Casing Datum above G (m) =	; / L -0.15	<u>^</u> [Datum =	Top of Casing		
\checkmark $ \vdots $ \checkmark Depth to Standing Water Level below Datum15.15 mDepth to Induced Water Level below Datum2.00 mDifferential head at start of Test (H_{o})13.15 mDifferential Head at end of Test (H_t)8.96 mTime Elapsed at end of test (t_t)50.0 minsWeather during Test	Depth to bottom of Test Section below GL (m)= Before 7.00 After 7.00	h to top it Section v GL (m)= 5.00		····	Depth to Standing Water below GL (m) = <u>V</u> Standi - Length of Test Sectior (m) =	15.00 ng WL 1.00		
Depth to Standing Water Level below Datum15.15 mDepth to Induced Water Level below Datum2.00 mDifferential head at start of Test (H _o)13.15 mDifferential Head at end of Test (H _t)8.96 mTime Elapsed at end of test (t _t)50.0 minsWeather during Test	<u> </u>			<u> </u>				
Depth to Induced Water Level below Datum2.00 mDifferential head at start of Test (Ho)13.15 mDifferential Head at end of Test (Hf)8.96 mTime Elapsed at end of test (tf)50.0 minsWeather during Test	Depth to Standing Water	[.] Level be	low D	atum	15.15	ōm		
Differential head at start of Test (H _o) I3.15 m Differential Head at end of Test (H _f) 8.96 m Time Elapsed at end of test (t _i) 50.0 mins Weather during Test	Depth to Induced Water	Level bel	ow Da	atum	2.00) m		
Differential Head at end of Test (H _f) 8.96 m Time Elapsed at end of test (t _f) 50.0 mins Weather during Test 50.0 mins	Differential head at start	of Test (H	Н _{о)}		13.15	5 m		
Time Elapsed at end of test (t _i) 50.0 mins Weather during Test	Differential Head at end o	of Test (H	l _f)		8.96	5 m		
Weather during Test	Time Elapsed at end of te	est (t _f)			50.0) mins		
Test Carried Out By Cl	Weather during Test Test Carried Out By		CI					

AS

Structureless CHALK

Test Meas	urements					
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)		Height of Datum a (m) (negative value	Casing / bove GL) = -0.1 e if above ground)
(minutes)	(m)	(minutes)	(m)		/	
0.0	2.00					
0.5	3.10					Depth to to
1.0	3.56					of Test Section
1.5	3.86			Depth of To	to bottom)=
2.0	4.04			below	GL (m)=	6.00
2.5	4.28			Before	7.00	
3.0	4.43			After	7.00	
3.5	4.55					
4.0	4.71					
4.5	4.82					
5.0	4.91					
6.0	5.10					
7.0	5.16				Ň	/
8.0	5.27				-	
9.0	5.37			Depth	to Standing	Water Level
10.0	5.42			Depth	to Induced	Water Level I
15.0	5.57			Differe	ntial head a	it start of Test
20.0	5.73			Differe	ntial Head	at end of Test
30.0	5.96			Time E	lapsed at e	nd of test (t _f)
40.0	6.19			Weath	ner during	Test
50.0	6.26			Test C	Carried Ou	ıt By
				Test C Descri	Checked B ption of T	y Test Section

Client	WSP UK Limited								Borehole Project Test No Date	e No	BH41 PE201677 3 17/11/2020	
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	∆H (m)		Time (mins)	Measur d Dept (m)	re Relative h Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	2.00	1.85	13.15	0.00		50.0	6.26	6.11	8.89	0.68	
	0.5	3.10	2.95	12.05	0.92							
	1.0	3.56	3.41	11.59	0.88							
	1.5	3.86	3.71	11.29	0.86							
	2.0	4.04	3.89	11.11	0.84							
	2.5	4.28	4.13	10.87	0.83							
	3.0	4.43	4.28	10.72	0.82							
	3.5	4.55	4.40	10.60	0.81							
	4.0	4.71	4.56	10.44	0.79							
	4.5	4.82	4.67	10.33	0.79							
	5.0	4.91	4.76	10.24	0.78							
	6.0	5.10	4.95	10.05	0.76							
	7.0	5.16	5.01	9.99	0.76							
	8.0	5.27	5.12	9.88	0.75							
	9.0	5.37	5.22	9.78	0.74							
	10.0	5.42	5.27	9.73	0.74							
	15.0	5.57	5.42	9.58	0.73							
	20.0	5.73	5.58	9.42	0.72							
	30.0	5.96	5.81	9.19	0.70							
	40.0	6.19	6.04	8.96	0.68							
					Time (mi	nutes)					
14.0)	10		20		30		40		50	60	
14.0	•											

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU TESTING - Permeability (Borehole)

INSITU	TESTING - Permeability (Be	orehole) she	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH41			
		Project No	o PE201677			
		Test No	3.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	13.15	1.00	9.0	9.78	0.74			
0.5	12.05	0.92	10.0	9.73	0.74			
1.0	11.59	0.88	15.0	9.58	0.73			
1.5	11.29	0.86	20.0	9.42	0.72			
2.0	11.11	0.84	30.0	9.19	0.70			
2.5	10.87	0.83	40.0	8.96	0.68			
3.0	10.72	0.82	50.0	8.89	0.68			
3.5	10.60	0.81						
4.0	10.44	0.79						
4.5	10.33	0.79						
5.0	10.24	0.78						
6.0	10.05	0.76						
7.0	9.99	0.76						
8.0	9.88	0.75						

Type of Test	Variable Head - Falling			
Depth to Standing Water				
Level	15.15	m		
Depth to Induced Water				
Level	2.00	m		
Differential head at start (H _{o)}				
	13.15	m		
Diameter of Test Section	0.12	m		
Diameter of Measuring Tube	0.12	m		
Test Length (L)	1.00	m		
Area of Test Section (As)	1.13E-02	m ²		
Area of Measuring Tube (Af)	1.13E-02	m ²		

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.233	
Time (t1)	5.00	mins
Time (t2)	50.00	mins
Head at Time tI (HI)	10.240	m
Head at Time t2 (H2)	8.890	m
Permeability (k) =	2 65E-07	m/sec
A/(F[t2-	2.03L-07	iii/sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU TESTING - Permeability (Borehole) Form INS005 Re Sheet 1 - Test Details and Measured Va									
Project	Aquind D	Prainage Design Additional Gl		Borehole	BH42				
				Project No	PE201677				
				Test No	I				
Client	WSP UK	Limited		Date	17/11/2020				
Water Pe	rmeabilit	y Test in a Borehole using	g Open Systems in acco	rdance with BS	EN ISO 22282-2:201				
Borehole	Details		Test Details						
Inclination		Vertical	Test Type	Variable	e Head - Falling				
Method of	Drilling	Dynamic Sampling	Hydrogeological Cond	litions Test Se	ction Patially Saturated				
Co-ordinat	es (m)	E 467208.7	Type of Filter	None					
		N 360 .0	Isolation Device	None					
Level (m O	D)	86.13	Test Section Dia. (m)	0.12					
			Measuring Tube Dia. ((m) 0.12					

-				
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / A Datum above GL $(m) = 0.00$ (negative value if above ground) V Datum = Top of Casing
(minutes) 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0	(m) 2.37 2.64 2.80 2.93 3.10 3.25 3.40 3.52 3.62	(minutes)	(m)	Depth to bottom of Test Section below GL (m) = Depth to top of Test Section below GL (m) = Depth to Standing Water below GL (m) = Depth to bottom of Test Section below GL (m) = ••••••••••••••••••••••••••••••••••••
2.3 2.5 2.8 3.0	3.70 3.79 3.87 3.93			V Length of Test Section (m) = 1.50
				Depth to Standing Water Level below Datum 6.00 m Depth to Induced Water Level below Datum 2.37 m Differential head at start of Test (H_o) 3.63 m Differential Head at end of Test (H_f) 1.92 m Time Elapsed at end of test (t_f) 3.0 mins Weather during TestTest Carried Out ByCJCJTest Checked ByASDescription of Test SectionStructureless CHALK

NSI	τυ τι	ESTIN	G - Per	rmeabi	lity (Bo	rehole)				Form INS0 Sheet 2 - To
roject Client	Aqui WSF	ind Draina	ge Design ed	Addition	al GI			Borehole Project N Test No Date	No	BH42 PE201677 I 17/11/2020
	Tost Ro	sults								
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)
	0.0	2.37	2.37	3.63	0.00					
	0.3	2.64	2.64	3.36	0.93					
	0.5	2.80	2.80	3.20	0.88					
	0.8	2.93	2.93	3.07	0.85					
	1.0	3.10	3.10	2.90	0.80					
	1.3	3.25	3.25	2.75	0.76					
	1.5	3.40	3.40	2.60	0.72					
	1.8	3.52	3.52	2.48	0.68					
	2.0	3.62	3.62	2.38	0.66					
	2.3	3.70	3.70	2.30	0.63					
	2.5	3.79	3.79	2.21	0.61					
	2.8	3.87	3.87	2.13	0.59					
	3.0	3.93	3.93	2.07	0.57					
<u>.</u>										
					i ime (r	minutes)				
4.0	,		1		2	2		3	3	4
3.5)									
3.0 -	•	•	•							
E ^{2.5}				•	•	•	•			
Ħ2.0							-	• •	•	
Leac										

> 1.0 0.5 0.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

Form INS005 Rev 6 Sheet 2 - Test Results

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH42		
		Project No	PE201677		
		Test No	1.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	3.63	1.00						
0.3	3.36	0.93						
0.5	3.20	0.88						
0.8	3.07	0.85						
1.0	2.90	0.80						
1.3	2.75	0.76						
1.5	2.60	0.72						
1.8	2.48	0.68						
2.0	2.38	0.66						
2.3	2.30	0.63						
2.5	2.21	0.61						
2.8	2.13	0.59						
3.0	2.07	0.57						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TESTII	NG - Perr	neability	(Borehole)	Shee	Form INS005 Re et I - Test Details and Measured Va		
Project	Aquind Drain	age Design A	lditional GI		Borehole Project No Test No	BH42 PE201677 2		
Client	WSP UK Lim	ited			Date	17/11/2020		
Water Per	rmeability T	est in a Bore	hole using C	Open Systems in accord	dance with	BS EN ISO 22282-2:2		
Inclination	Details	Ventical		Test Decails	Vari	iable Lload Falling		
Method of [Drilling	Dynamic Sa	mpling	Hydrogeological Condit	tions Test	Test Section Patially Saturated		
Co-ordinate	es (m)	E 467208.7		Type of Filter	Nor	None		
		N I I 3601.0		Isolation Device	Nor	ne		
Level (m Ol	D)	86.13		Test Section Dia. (m)	0.12	2		
				Measuring Tube Dia. (m	n) 0.12	2		
Test Meas	urements							
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing Datum above GL (m) = (negative value if above gr	/ A	Datum = Top o Casin		

i est i leas						.		
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Datum a (m) (negative value	Casing / bove GL) = 0.00 e if above ground)	∧ - - -	Datum =	Top of Casing
(minutes)	(m)	(minutes)	(m)	/			Depth to	
0.0	2.25						Standing	
0.3	2.72				Depth to top		Water below GL	
0.5	2.95				below GL (m		(m) =	6.00
0.8	3.10			Depth to bottom)=			
1.0	3.25			below GL (m)=	4.50		🖌 Standir	ng WL
1.3	3.38			Before 6.00			-	
1.5	3.47			After 6.00				
1.8	3.65							
2.0	3.77							
2.3	3.80				'v			
				· · · · · · · · · · · · · · · · · · ·	/	∧	Test Section (m) =	1.50
				Depth to Standing	g Water Level belo	ow Datum	6.00	m
				Depth to Induced	Water Level belo	w Datum	2.25	m
				Differential head a	at start of Test (H	o)	3.75	m
				Differential Head	at end of Test (H _f)	11.20	m
				Time Elapsed at e	nd of test (t _f)		2.3	mins
				Weather during	Test			
				Test Carried Ou	ut By	CJ		
				Test Checked B	у.	AS		
				Description of T	est Section	Structureles	ss CHALK	

<u>NSI</u>	<u>tu t</u> e	STIN	<u>G - Per</u>	<u>meabi</u>	lity (Bo	<u>or</u>	ehole)				Form IN Sheet 2	15005 F - Test R
roject	Aqui	nd Draina	ge Design ed	Additiona	al GI				Borehole Project N Test No Date	No	BH42 PE201677 2 17/11/202	,
,iieiit	**51		eu						Date		17/11/202	
	Test Res	sults				1		1				
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	2.25	2.25	3.75	0.00							
	0.3	2.72	2.72	3.28	0.87							
	0.5	2.95	2.95	3.05	0.81							
	0.8	3.10	3.10	2.90	0.77							
	1.0	3.25	3.25	2.75	0.73							
	1.3	3.38	3.38	2.62	0.70							
	1.5	3.47	3.47	2.53	0.67							
	1.8	3.65	3.65	2.35	0.63							
	2.0	3.77	3.77	2.23	0.59							
	2.3	3.80	3.80	2.20	0.59							
					Time	(mi	nutes)					
4.0) 		1		1		2	2	:	2		з Т
3.5 -	•											
	•											
3.0 -				•	•							
E ^{2.5}							•		•			-
H 2.0											•	
ead												
⊥ 1.5 -												
1.0 -												-
0.5												

0.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH42		
		Project No	PE201677		
		Test No	2.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	3.75	1.00						
0.3	3.28	0.87						
0.5	3.05	0.81						
0.8	2.90	0.77						
1.0	2.75	0.73						
1.3	2.62	0.70						
1.5	2.53	0.67						
1.8	2.35	0.63						
2.0	2.23	0.59						
2.3	2.20	0.59						

Water assumed at base of hole.

Result is an approximation only and is not a true permeability as no water was encountered during drilling.

INSITU TES	TING - Permeabilit	y (Borehole)	Form INS005 Rev 6 Sheet I - Test Details and Measured Values			
Project Aquind I	Drainage Design Additional GI	Bor Pro	ehole ject No	BH42 PE201677		
Client WSP UK	(Limited	Tes Dat	t No .e	3 7/ /2020		
Water Permeabili	ty Test in a Borehole using	g Open Systems in accordanc	e with BS	EN ISO 22282-2:2012		
Borehole Details		Test Details				
Inclination	Vertical	Test Type	Variable	e Head - Falling		
Method of Drilling	Dynamic Sampling	Hydrogeological Conditions	Test Se	ction Patially Saturated		
Co-ordinates (m)	E 467208.7	Type of Filter	None			
	N 113601.0	Isolation Device	None			
Level (m OD)	86.13	Test Section Dia. (m)	0.12			
· · ·		Measuring Tube Dia. (m)	0.12			

Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = 0.00 (negative value if above ground)
(minutes)	(m)	(minutes)	(m)	Line Contraction C
0.0	2.35			Standing
0.3	2.77			Depth to top Vvater below GL
0.5	2.92			below GL (m ! (m) = 6.00
0.8	3.12			of Test Section)=
1.0	3.25			below GL (m)= 4.50 ↓ ↓ Standing WL
1.3	3.38			Before 6.00
1.5	3.51			After 6.00
1.8	3.61			
2.0	3.67			
2.5	3.88			¥
3.0	3.99			▲ Length of Test Section
3.5	4.13			(m) = 1.50
4.0	4.26			
4.5	4.38			
5.0	4.52			Depth to Standing Water Level below Datum 6.00 m
6.0	4.68			Depth to Induced Water Level below Datum 2.35 m
7.0	4.97			Differential head at start of Test (H _{o)} 3.65 m
8.0	5.14			Differential Head at end of Test (H _f) 9.27 m
9.0	5.23			Time Elapsed at end of test (t _r) 30.0 mins
10.0	5.42			Weather during Test
15.0	5.73			Test Carried Out By CJ
20.0	5.73			Test Checked By AS
25.0	5.73			Description of Test Section Structureless CHALK
30.0	5.73			

INSI	U IESIING - Permeability (Borenole)										
'roject	Aqui	ind Draina	ge Design	Additiona	al GI				Borehole		BH42
									Project 1	No	PE201677
									Test No		3
Client	WSF	⁹ UK Limit	ed						Date		17/11/2020
	Test Res	sults									
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	∆H (m)
	(mins)	d Depth	Depth				(mins)	d Depth	Depth		
		(m)	(m bgl)					(m)	(m bgl)		
	0.0	2.35	2.35	3.65	0.00		15.0	5.73	5.73	0.27	0.07
	0.3	2.77	2.77	3.23	0.88		20.0	5.73	5.73	0.27	0.07
	0.5	2.92	2.92	3.08	0.84		25.0	5.73	5.73	0.27	0.07
	0.8	3.12	3.12	2.88	0.79		30.0	5.73	5.73	0.27	0.07
	1.0	3.25	3.25	2.75	0.75						
	1.3	3.38	3.38	2.62	0.72						
	1.5	3.5 I	3.51	2.49	0.68						
	1.8	3.61	3.61	2.39	0.65						
	2.0	3.67	3.67	2.33	0.64						
	2.5	3.88	3.88	2.12	0.58						
	3.0	3.99	3.99	2.01	0.55						
	3.5	4.13	4.13	1.87	0.51						
	4.0	4.26	4.26	1.74	0.48						
	4.5	4.38	4.38	1.62	0.44						
	5.0	4.52	4.52	1.48	0.41						
	6.0	4.68	4.68	1.32	0.36						
	7.0	4.97	4.97	1.03	0.28						
	8.0	5.14	5.14	0.86	0.24						
	9.0	5.23	5.23	0.77	0.21						
	10.0	5.42	5.42	0.58	0.16						
					Time	(miı	nutes)				
(4.0 -	0	5	10		15		20		25	30	35
3.5 -									-		

•

٠ •

3.0

2.5 2.0 1.5

1.0

0.5

0.0

Head, Ht (m)

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

¢

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole)	Sheet 3 - In	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page 1)			
Project	Aquind Drainage Design Additional GI	Borehole	BH42			
		Project No	PE201677			
		Test No	3.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	3.65	1.00	5.0	1.48	0.41			1
0.3	3.23	0.88	6.0	1.32	0.36			
0.5	3.08	0.84	7.0	1.03	0.28			
0.8	2.88	0.79	8.0	0.86	0.24			
1.0	2.75	0.75	9.0	0.77	0.21			
1.3	2.62	0.72	10.0	0.58	0.16			
1.5	2.49	0.68	15.0	0.27	0.07			
1.8	2.39	0.65	20.0	0.27	0.07			
2.0	2.33	0.64	25.0	0.27	0.07			
2.5	2.12	0.58	30.0	0.27	0.07			
3.0	2.01	0.55						
3.5	1.87	0.51						
4.0	1.74	0.48						
4.5	1.62	0.44						

Type of Test	Variable Head - Falling				
Depth to Standing Water					
Level	6.00	m			
Depth to Induced Water					
Level	2.35	m			
Differential head at start $(H_{o)}$					
	3.65	m			
Diameter of Test Section	0.12	m			
Diameter of Measuring Tube	0.12	m			
Test Length (L)	1.50	m			
Area of Test Section (As)	1.13E-02	m ²			
Area of Measuring Tube (Af)	1.13E-02	m ²			

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	2.927	
Time (t1)	2.50	mins
Time (t2)	10.00	mins
Head at Time tI (HI)	2.120	m
Head at Time t2 (H2)	0.580	m
Permeability (k) = Δ /(F[t2-	I.IIE-05	m/sec

Elapsed Time (mins)

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

ΙΝSΙΤ	J TES	TING - Permeabilit	y (Borehole)	Sheet I ·	Form INS005 Rev 6 t I - Test Details and Measured Values			
Project	Aquind D	Prainage Design Additional Gl		Borehole	BH42			
				Project No	PE201677			
				Test No	I			
Client	WSP UK	Limited		Date	17/11/2020			
Water Pe	rmeabilit	y Test in a Borehole using	g Open Systems in acco	rdance with BS	EN ISO 22282-2:201			
Borehole	Details		Test Details					
Inclination		Vertical	Test Type	Variable	e Head - Falling			
Method of	Drilling	Dynamic Sampling	Hydrogeological Cond	litions Test Se	ction Patially Saturated			
Co-ordinat	es (m)	E 467208.7	Type of Filter	None				
		N 360 .0	Isolation Device	None				
Level (m O	D)	86.13	Test Section Dia. (m)	0.12				
			Measuring Tube Dia. ((m) 0.12				

Test Meas	urements		_	
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / A Datum above GL (m) = 0.00 (negative value if above ground)
(minutes)	(m)	(minutes)	(m)	Depth to
0.0	2.37			Standing
0.3	2.64			Depth to top Water
0.5	2.80			of Test Section (m) = 15.00
0.8	2.93			Depth to bottom of Test Section)=
1.0	3.10			below GL (m)= 4.50 ↓ ↓ Standing WL
1.3	3.25			Before 6.00
1.5	3.40			After 6.00
1.8	3.52			
2.0	3.62			
2.3	3.70			₩ <u>₩</u>
2.5	3.79			▲ Length of Test Section
2.8	3.87			(m) = 1.50
3.0	3.93			
				Depth to Standing Water Level below Datum15.00 mDepth to Induced Water Level below Datum2.37 mDifferential head at start of Test (H_0) 12.63 mDifferential Head at end of Test (H_t) 1.92 mTime Elapsed at end of test (t_i) 3.0 minsWeather during TestTest Carried Out By
				Test Checked By AS
				Description of Test Section Structureless CHALK

Project	Aqui	nd Draina	ge Design	l GI			Borehole Project No Test No		BH42 PE201677			
Client	WSF	PUK Limit	ed						Date		17/11/2020	
	Test Res	sults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	2.37	2.37	12.63	0.00							
	0.3	2.64	2.64	12.36	0.98							
	0.5	2.80	2.80	12.20	0.97							
	0.8	2.93	2.93	12.07	0.96							
	1.0	3.10	3.10	11.90	0.94							
	1.3	3.25	3.25	11.75	0.93							
	1.5	3.40	3.40	11.60	0.92							
	1.8	3.52	3.52	11.48	0.91							
	2.0	3.62	3.62	11.38	0.90							
	2.3	3.70	3.70	11.30	0.89							
	2.5	3.79	3.79	11.21	0.89							
	2.8	3.87	3.87	11.13	0.88							
	3.0	3.93	3.93	11.07	0.88							
		1	I	I	Time	l l (mir	nutes)		I	I	1	
(0	1	1		2		2		3	3		4
12.8												
12.6	T											
12.4 -	•											
12.2 ·		•	•									1
ש ^{12.0} ד			•									1
1 , 11.8 -				•								
ኇ 11.6 -					•				-			-

11.4

11.2

11.0 10.8

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

•

•

•

Form INS005 Rev 6 Sheet 2 - Test Results

INSIT	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH42		
		Project No	PE201677		
		Test No	1.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	12.63	1.00						
0.3	12.36	0.98						
0.5	12.20	0.97						
0.8	12.07	0.96						
1.0	11.90	0.94						
1.3	11.75	0.93						
1.5	11.60	0.92						
1.8	11.48	0.91						
2.0	11.38	0.90						
2.3	11.30	0.89						
2.5	11.21	0.89						
2.8	11.13	0.88						
3.0	11.07	0.88						

Remarks and Additional Information

INSITU	TESTI	NG - Perr	neability	(Borehole)	Sheet I - T	Form INS005 Rev 6 Sheet I - Test Details and Measured Values							
Project	Aquind Drain	age Design Ad	ditional GI	Bor	ehole	BH42	BH42						
				Proj	ect No	PE201677	PE201677						
				Tes	t No	2							
Client	WSP UK Lim	ited		Dat	e	17/11/202	.0						
Water Per	meability T	est in a B ore	hole using C	Open Systems in accordance	e with BS	EN ISO 222	82-2:2012						
Borehole I	Details			Test Details									
Inclination		Vertical		Test Type	Variable	Variable Head - Falling							
Method of [Drilling	Dynamic Sa	mpling	Hydrogeological Conditions	Test Section Patially Saturated								
Co-ordinate	es (m)	E 467208.7		Type of Filter	None								
		N 360 .0		Isolation Device	None								
Level (m OI	D)	86.13		Test Section Dia. (m)	0.12								
				Measuring Tube Dia. (m)	0.12								
Test Meas	urements				_								
Elapsed Time	Depth of Water below	Elapsed Time	Depth of Water below	Height of Casing / Datum above GL (m) = 0.00	^	Datum =	Top of Casing						

Test Meas	urements								
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Datum a (m) (negative value	Casing / bove GL) = 0.00 e if above ground)		Datum =	Top of Casing	
(minutes)	(m)	(minutes)	(m)	/		<u>*</u>	Depth to		
0.0	2.25						Standing		
0.3	2.72				Depth to top		Water below GL		
0.5	2.95				below GL (m	וו	(m) =	15.00	
0.8	3.10			of Test Section)=				
1.0	3.25			below GL (m)=	4.50	i l	🗸 🖌 Standii	ng WL	
1.3	3.38			Before 6.00		 	-		
1.5	3.47			After 6.00					
1.8	3.65								
2.0	3.77								
2.3	3.80				/		Length of Test Section (m) =	n 1.50	
							$ \begin{array}{ll} \text{rr Level below Datum} & \text{I5.0} \\ \text{rr Level below Datum} & 2.2 \\ \text{rof Test } (\text{H}_{\text{o})} & \text{I2.7} \\ \text{of Test } (\text{H}_{f}) & \text{I1.2} \\ \text{est } (t_{f}) & 2. \end{array} $		
				Weather during	Test				
				Test Carried Ou	ıt By	CJ			
				Test Checked B	у	AS			
				Description of T	est Section	Structure	less CHALK		
	ļļ	!	,J	μ					

Droject				Addition		<u>)</u>	enolej		<u> </u>		Sheet 2	- Test Result
Project	Aqui	nd Draina	ge Design	Additiona	ai Gi				Borehole		BH42	
									Test No	NO	PE2016/7	
Client	WSF	PUK Limit	ed						Date		17/11/202	20
			-									
	Test Res	sults				_						
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	ΔH (m)	
	(mins)	d Depth	Depth				(mins)	d Depth	Depth			
		(m)	(m bgl)					(m)	(m bgl)			
	0.0	2.25	2.25	12.75	0.00							
	0.3	2.72	2.72	12.28	0.96							
	0.5	2.95	2.95	12.05	0.95							
	0.8	3.10	3.10	11.90	0.93							
	1.0	3.25	3.25	11.75	0.92							
	1.3	3.38	3.38	11.62	0.91							
	1.5	3.47	3.47	11.53	0.90							
	1.8	3.65	3.65	11.35	0.89							
	2.0	3.77	3.77	11.23	0.88							
	2.3	3.80	3.80	11.20	0.88							
	0		1		1	(2		3
13.0												1 I
12.8	•											
12.6												_
12.4												_
E 12.2												_
Ħ _{12.0}			•									_
Head				•								_
					Ţ		•					_
11.4												
11.2									•		•	

11.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6
INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev (Sheet 3 - Interpretation of Results (Page 1				
Project	Aquind Drainage Design Additional GI	Borehole	BH42			
		Project No	PE201677			
		Test No	2.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	12.75	1.00						
0.3	12.28	0.96						
0.5	12.05	0.95						
0.8	11.90	0.93						
1.0	11.75	0.92						
1.3	11.62	0.91						
1.5	11.53	0.90						
1.8	11.35	0.89						
2.0	11.23	0.88						
2.3	11.20	0.88						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	J TES	TING - Permeabilit	y (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values			
Project	Project Aquind Drainage Design Additional GI			Borehole Project No	BH42 PE201677			
Client WSP UK Limited			Test ino Date	3 7/ /2020				
Water Pe	ermeabilit	y Test in a Borehole using	g Open Systems in accord	ance with BS	EN ISO 22282-2:2012			
Borehole	Details		Test Details					
Inclination		Vertical	Test Type	Variable	e Head - Falling			
Method of	Drilling	Dynamic Sampling	Hydrogeological Conditi	ons Test Se	ction Patially Saturated			
Co-ordinat	tes (m)	E 467208.7	Type of Filter	None				
		N 113601.0	Isolation Device	None				
Level (m C	D)	86.13	Test Section Dia. (m)	0.12				
			Measuring Tube Dia. (m)) 0.12				

Test MeasurementsEapsed TimeDepth of (Continued) (minutes)Depth of (Water below Top of Casing (continued)Depth of Water below Top of Casing (continued)Depth of ($m = 0.00$ ($m = 0.00$) ($m = 0.00$) 					
(minutes) (m) (minutes) (m) 0.0 2.35 (minutes) (m) 0.3 2.77 (minutes) (minutes	Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = 0.00 (negative value if above ground)
0.0 2.35 Standing 0.3 2.77 0.5 2.92 0.6 3.12 0.6 0.6 3.12 1.0 3.25 0.6 0.6 0.6 0.6 1.3 3.38 0.6 0.6 0.6 0.6 0.6 1.3 3.38 0.6 0.6 0.6 0.6 0.6 1.8 3.61 0.6 0.6 0.6 0.6 0.6 1.8 3.61 0.6 <td< td=""><td>(minutes)</td><td>(m)</td><td>(minutes)</td><td>(m)</td><td>L Depth to</td></td<>	(minutes)	(m)	(minutes)	(m)	L Depth to
0.3 2.77 $Water 0.5 2.92 0.6 3.12 0.6 0.6 3.12 0.6 0.6 3.12 0.6$	0.0	2.35			Standing
0.5 2.92	0.3	2.77			Depth to top Water
0.8 3.12	0.5	2.92			of Test Section (m) = 15.00
1.0 3.25	0.8	3.12			Of Test Section)=
1.3 3.38 Image: constraint of the section of the	1.0	3.25			below GL (m) = 4.50 ↓ ↓ Standing WL
1.5 3.51 1.8 3.61 2.0 3.67 1.8 3.61 2.5 3.88 1.61 1.8 3.0 3.99 1.61 1.61 3.5 4.13 1.61 1.61 4.0 4.26 1.61 1.61 4.5 4.38 1.61 1.51 6.0 4.68 1.52 1.61 6.0 4.68 1.61 1.61 7.0 4.97 1.61 1.61 8.0 5.14 1.61 1.61 9.0 5.23 1.61 1.61 1.60 5.73 1.61 1.61 $1.5.0$ 5.73 1.61 1.61 $1.5.0$ 5.73 1.61 1.61 $1.5.0$ 5.73 1.61 1.61 $2.5.0$ 5.73 1.61 1.61 $2.5.0$ 5.73 1.61 1.61 $1.5.0$ 5.73 1.61 1.61	1.3	3.38			Before 6.00
1.8 3.61 2.0 3.67 2.5 3.88 3.0 3.99 3.5 4.13 4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 11.5 5.73 20.0 5.73 25.0 5.73	1.5	3.51			After 6.00
2.0 3.67 2.5 3.88 3.0 3.99 3.5 4.13 4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 11.5 5.73 22.0 5.73	1.8	3.61			
2.5 3.88 3.0 3.99 3.5 4.13 4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 15.0 5.73 20.0 5.73 25.0 5.73	2.0	3.67			
3.0 3.99 3.5 4.13 4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 15.0 5.73 20.0 5.73 25.0 5.73	2.5	3.88			V V
3.5 4.13 4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 10.0 5.42 10.0 5.73 25.0 5.73 25.0 5.73	3.0	3.99			Test Section
4.0 4.26 4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 15.0 5.73 20.0 5.73 25.0 5.73	3.5	4.13			(m) = 1.50
4.5 4.38 5.0 4.52 6.0 4.68 7.0 4.97 8.0 5.14 9.0 5.23 10.0 5.42 15.0 5.73 20.0 5.73 25.0 5.73	4.0	4.26			
5.0 4.52 Depth to Standing Water Level below Datum 15.00 m 6.0 4.68 Depth to Induced Water Level below Datum 2.35 m 7.0 4.97 Depth to Induced Water Level below Datum 2.35 m 8.0 5.14 Differential head at start of Test (H _o) 12.65 m 9.0 5.23 Differential Head at end of Test (H _t) 9.27 m 10.0 5.42 Weather during Test 30.0 min 15.0 5.73 Test Carried Out By CJ 20.0 5.73 Description of Test Section Structureless CHALK	4.5	4.38			
6.0 4.68 Depth to Induced Water Level below Datum 2.35 m 7.0 4.97 Depth to Induced Water Level below Datum 2.35 m 8.0 5.14 Differential head at start of Test (H _o) 12.65 m 9.0 5.23 Differential Head at end of Test (H _t) 9.27 m 10.0 5.42 Weather during Test 30.0 min 15.0 5.73 Test Carried Out By CJ 20.0 5.73 Description of Test Section Structureless CHALK	5.0	4.52			Depth to Standing Water Level below Datum 15.00 m
7.0 4.97 Differential head at start of Test (H _o) 12.65 m 8.0 5.14 Differential Head at end of Test (H _i) 9.27 m 9.0 5.23 Time Elapsed at end of test (t _i) 30.0 min 10.0 5.42 Weather during Test 15.0 5.73 Test Carried Out By CJ 20.0 5.73 Description of Test Section Structureless CHALK	6.0	4.68			Depth to Induced Water Level below Datum 2.35 m
8.05.14Differential Head at end of Test (H _f)9.27 m9.05.23Time Elapsed at end of test (t _f)30.0 min10.05.42Weather during Test15.05.73Test Carried Out ByCJ20.05.73Test Checked ByAS25.05.73Description of Test SectionStructureless CHALK	7.0	4.97			Differential head at start of Test (H _{o)} I2.65 m
9.0 5.23 Time Elapsed at end of test (t _i) 30.0 min 10.0 5.42 Weather during Test Test Carried Out By CJ 20.0 5.73 Test Checked By AS 25.0 5.73 Description of Test Section Structureless CHALK	8.0	5.14			Differential Head at end of Test (H _f) 9.27 m
10.05.42Weather during Test15.05.73Test Carried Out ByCJ20.05.73Test Checked ByAS25.05.73Description of Test SectionStructureless CHALK	9.0	5.23			Time Elapsed at end of test (t _f) 30.0 mins
15.05.73Test Carried Out ByCJ20.05.73Test Checked ByAS25.05.73Description of Test SectionStructureless CHALK	10.0	5.42			Weather during Test
20.0 5.73 Test Checked By AS 25.0 5.73 Description of Test Section Structureless CHALK	15.0	5.73			Test Carried Out By CJ
25.0 5.73 Description of Test Section Structureless CHALK	20.0	5.73			Test Checked By AS
	25.0	5.73			Description of Test Section Structureless CHALK
30.0 5.73	30.0	5.73			

NSI	τυ τε	ESTIN	G - Per	meabi	lity (Bo	ore	ehole)				Form IN Sheet 2 -	SOO5 F Test R
roject	Aqui	ind Draina	ge Design	Borehole Project No Test No		BH42 PE201677 3						
lient	WSF	PUK Limit	ed						Date		17/11/202	0
	Test Res	sults										
	Time	Measure	Relative	Ht (m)	ΔH (m)		Time	Measure	Relative	Ht (m)	ΔH (m)	
	(mins)	d Depth	Depth				(mins)	d Depth	Depth			
		(m)	(m bgl)					(m)	(m bgl)			
	0.0	2.35	2.35	12.65	0.00		15.0	5.73	5.73	9.27	0.73	
	0.3	2.77	2.77	12.23	0.97		20.0	5.73	5.73	9.27	0.73	
	0.5	2.92	2.92	12.08	0.95		25.0	5.73	5.73	9.27	0.73	
	0.8	3.12	3.12	11.88	0.94		30.0	5.73	5.73	9.27	0.73	
	1.0	3.25	3.25	11.75	0.93							
	1.3	3.38	3.38	11.62	0.92							
	1.5	3.51	3.51	11.49	0.91							
	1.8	3.61	3.61	11.39	0.90							
	2.0	3.67	3.67	11.33	0.90							
	2.5	3.88	3.88	11.12	0.88							
	3.0	3.99	3.99	11.01	0.87							
	3.5	4.13	4.13	10.87	0.86							
	4.0	4.26	4.26	10.74	0.85							
	4.5	4.38	4.38	10.62	0.84							
	5.0	4.52	4.52	10.48	0.83							
	6.0	4.68	4.68	10.32	0.82							
	7.0	4.97	4.97	10.03	0.79							
	8.0	5.14	5.14	9.86	0.78							
	9.0	5.23	5.23	9.77	0.77							
	10.0	5.42	5.42	9.58	0.76							
					Time	(mi	nutes)					
0 14.0 +)	5	10		15		20		25	30		35 T
12.0	And a second sec											1
10.0		••••										
10.0												1

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6

INSIT	U TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page 1)				
Project	Aquind Drainage Design Additional GI	Borehole	BH42			
		Project No	PE201677			
		Test No	3.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	12.65	1.00	5.0	10.48	0.83	· · · · ·		
0.3	12.23	0.97	6.0	10.32	0.82			
0.5	12.08	0.95	7.0	10.03	0.79			
0.8	11.88	0.94	8.0	9.86	0.78			
1.0	11.75	0.93	9.0	9.77	0.77			
1.3	11.62	0.92	10.0	9.58	0.76			
1.5	11.49	0.91	15.0	9.27	0.73			
1.8	11.39	0.90	20.0	9.27	0.73			
2.0	11.33	0.90	25.0	9.27	0.73			
2.5	11.12	0.88	30.0	9.27	0.73			
3.0	11.01	0.87						
3.5	10.87	0.86						
4.0	10.74	0.85						
4.5	10.62	0.84						

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	15.00	m
Depth to Induced Water		
Level	2.35	m
Differential head at start (H _{o)}		
	12.65	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	1.50	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 : mins	Time at ratio H/Ho=.37 :	mins
-------------------------------	--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH	
Shape factor (F)	2.927		
Time (t1)	2.50	mins	
Time (t2)	10.00	mins	
Head at Time tI (HI)	11.120	m	
Head at Time t2 (H2)	9.580	m	
Permeability (k) =	1 28E-06	m/sec	
A/(F[t2-	1.202-00		

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet I - Test Details and Measured Values				
Project	Aquind Drainage Design Additional GI	Borehole	BH43			
		Project No	PE201677			
		Test No	I			
Client	WSP UK Limited	Date	17/11/2020			
Water P	ermeability Test in a Borehole using Open Systems in a	ccordance with BS	EN ISO 22282-2:20			

Test Details

Borehole Details

Inclination			Vertical	Test T	уре		Variable Head - Falling					
Method of D	Drilling		Dynamic Sa	mpling	Hydrogeological Conditions			Test Section Patially Saturated				
Co-ordinate	s (m)	Е	467849.3		Type of Filter			Non	None			
		Ν	99138.0		Isolatic	on Device	e	Non	e			
Level (m OE	D)		3.46		Test Se	ection Di	a. (m)	0.12				
					Measur	Measuring Tube Dia. (m)						
Test Meas	urements							<u> </u>				
Elapsed Time	Depth of Water below Top of Casing		Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)		Height o Datum a (m (negative valu	t Casing / above GL a) = -0.45 re if above ground)	A − − − − − − − − − − − − − − − − − − −		Datum =	Top of Casing	
(minutes)	(m)		(minutes)	(m)			1	, ¦		Depth to		
0.0	0.77									Standing		
0.5	1.23						Depth to to	P¦		vvater below GL		
1.0	1.52						below GL (n	n l		(m) =	2.65	
1.5	1.62				of Tes	to bottom at Section)=					
2.0	1.78				below	GL (m)=	2.60	i I		/ 🖌 Standi	ng WL	
2.5	1.90				Before	2.65						
3.0	2.00				After	2.65		1				
3.5	2.10							i				
4.0	2.16											
4.5	2.23							v	<u> </u>			
5.0	2.37									Length of Test Section	า	
6.0	2.43									(m) =	0.05	
7.0	2.51					-	<u> </u>		V V			
8.0	2.57											
9.0	2.62				Depth t	to Standing	g Water Level I	below D	atum	3.10) m	
14.0	2.73	_			Depth t	to Induced	l Water Level b	elow Da	tum	0.77	7 m	
					Differer	ntial head	at start of Test	(H _{o)}		2.33	3 m	
					Differer	ntial Head	at end of Test	(H _f)		12.72	2 m	
					Time El	apsed at e	end of test (t _f)			14.() mins	
					Weath	er during	g Test					
					Test C	arried O	ut By	CJ				
					Test C	hecked E	Ву	AS				
		-			Descrij	ption of ⁻	Test Section	Light coar:	: brov se SA	vn gravelly fii ND.	ne to	

Project Client	Aquind Drainage Design Additional GI WSP UK Limited									No	BH43 PE201677 I 17/11/2020	
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	0.77	0.32	2.33	0.00							
	0.5	1.23	0.78	1.87	0.80							
	1.0	1.52	1.07	1.58	0.68							
	1.5	1.62	1.17	I.48	0.64							
	2.0	I.78	1.33	1.32	0.57							
	2.5	1.90	I.45	1.20	0.52							
	3.0	2.00	1.55	1.10	0.47							
	3.5	2.10	1.65	1.00	0.43							
	4.0	2.16	1.71	0.94	0.40							
	4.5	2.23	1.78	0.87	0.37							
	5.0	2.37	1.92	0.73	0.31							
	6.0	2.43	1.98	0.67	0.29							
	7.0	2.51	2.06	0.59	0.25							
	8.0	2.57	2.12	0.53	0.23							
	9.0	2.62	2.17	0.48	0.21							
	14.0	2.73	2.28	0.37	0.16							
					Time	(mi	nutes)					
(2.5 m	0	2	4	6		8		10	12	14	16	
	•											
2.0 -												
	•											
E 1.5 -	••	-				-						

Remarks and Additional Information

Results is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSITU	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)		
Project	Aquind Drainage Design Additional GI	Borehole	BH43	
		Project No	PE201677	
		Test No	1.000	
Client	WSP UK Limited	Date	17/11/2020	

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	2.33	1.00	9.0	0.48	0.21				
0.5	1.87	0.80	14.0	0.37	0.16	1			
1.0	1.58	0.68				1			
1.5	I.48	0.64							
2.0	1.32	0.57							
2.5	1.20	0.52							
3.0	1.10	0.47							
3.5	1.00	0.43							
4.0	0.94	0.40							
4.5	0.87	0.37							
5.0	0.73	0.31							
6.0	0.67	0.29							
7.0	0.59	0.25							
8.0	0.53	0.23							

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	3.10	m
Depth to Induced Water		
Level	0.77	m
Differential head at start (H _{o)}		
	2.33	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	0.05	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	0.330	
Time (t1)	1.00	mins
Time (t2)	8.00	mins
Head at Time tI (HI)	1.580	m
Head at Time t2 (H2)	0.530	m
Permeability (k) =	8 9 I E_05	misoc
A/(F[t2-	0.712-05	III/SEC

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

Project	Aquind Drainage Design Additional GI	Borehole	BH43
		Project No	PE201677
		Test No	2
Client	WSP UK Limited	Date	17/11/2020

Borehole Details		
Inclination	Vertical	
Method of Drilling	Dynamic Sampling	
Co-ordinates (m)	E 467849.3	
	N 99138.0	
Level (m OD)	3.46	

Test Details					
Test Type	Variable Head - Falling				
Hydrogeological Conditions	Test Section Patially Saturated				
Type of Filter	None				
Isolation Device	None				
Test Section Dia. (m)	0.12				
Measuring Tube Dia. (m)	0.12				
Height of Casing / Datum above GL (m) = -0.45 (negative value if above ground)	Datum = Top of Casing				
Depth to bottom of Test Section below GL (m)= 2.60 Before 2.65 After 2.65	Depth to Standing Water below GL (m) = 2.65 ✓ ✓ Standing WL - - - - - - - - - - - - -				
Depth to Standing Water Level be	low Datum 3.10 m				
Depth to Induced Water Level bel	ow Datum 0.51 m				
Differential head at start of Test (H	H _{o)} 2.59 m				
Differential Head at end of Test (H	l _r) 12.75 m				
Time Elapsed at end of test (t_f)	16.0 mins				
Weather during Test					
Test Carried Out By	CJ				
Test Checked By	AS				
Description of Test Section	Light brown gravelly fine to coarse SAND.				

Test Meas	urements				
Elapsed Time Depth of Top of Casing		Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)		
(minutes)	(m)	(minutes)	(m)		
0.0	0.51				
0.5	0.67				
1.0	0.86				
1.5	1.00				
2.0	1.14				
2.5	1.26				
3.0	1.39				
3.5	1.50				
4.0	1.67				
4.5	1.72				
5.0	1.78				
6.0	1.92				
7.0	2.07				
8.0	2.19				
9.0	2.24				
10.0	2.34				
11.0	2.45				
12.0	2.50				
13.0	2.58				
14.0	2.59				
15.0	2.65				
16.0	2.70				

Project Client	Aquind Drainage Design Additional GI WSP UK Limited								Borehole Project No Test No Date		BH43 PE201677 2 17/11/2020	
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	0.51	0.06	2.59	0.00		15.0	2.65	2.20	0.45	0.17	
	0.5	0.67	0.22	2.43	0.94		16.0	2.70	2.25	0.40	0.15	
	1.0	0.86	0.41	2.24	0.86							
	1.5	1.00	0.55	2.10	0.81							
	2.0	1.14	0.69	1.96	0.76							
	2.5	1.26	0.81	1.84	0.71							
	3.0	1.39	0.94	1.71	0.66							
	3.5	1.50	1.05	1.60	0.62							
	4.0	I.67	1.22	1.43	0.55							
	4.5	1.72	1.27	1.38	0.53							
	5.0	I.78	1.33	1.32	0.51							
	6.0	1.92	1.47	1.18	0.46							
	7.0	2.07	1.62	1.03	0.40							
	8.0	2.19	1.74	0.91	0.35							
	9.0	2.24	1.79	0.86	0.33							
	10.0	2.34	1.89	0.76	0.29							
	11.0	2.45	2.00	0.65	0.25							
	12.0	2.50	2.05	0.60	0.23							
	13.0	2.58	2.13	0.52	0.20							
	14.0	2.59	2.14	0.51	0.20							
					Time	(mi	nutes)					
30 -	0	2	4	6	8		10	12	14	1	6 18	3
5.0												
2.5												
	•											
2.0 -	•	•										
Ht (u		•										
- 1.5 - Head,			•••	•								

Remarks and Additional Information

1.0

0.5

0.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

٠

•

Form INS005 Rev 6 Sheet 2 - Test Results

INSITU TESTING - Permeability (Borehole)

INSITU	TESTING - Permeability (Borehole)	Sh	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH43			
		Project N	o PE201677			
		Test No	2.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	2.59	1.00	9.0	0.86	0.33			
0.5	2.43	0.94	10.0	0.76	0.29			
1.0	2.24	0.86	11.0	0.65	0.25			
1.5	2.10	0.81	12.0	0.60	0.23			
2.0	1.96	0.76	13.0	0.52	0.20			
2.5	1.84	0.71	14.0	0.51	0.20			
3.0	1.71	0.66	15.0	0.45	0.17			
3.5	1.60	0.62	16.0	0.40	0.15			
4.0	1.43	0.55						
4.5	1.38	0.53						
5.0	1.32	0.51						
6.0	1.18	0.46						
7.0	1.03	0.40						
8.0	0.91	0.35						

Type of Test	Variable Head - Falling				
Depth to Standing Water					
Level	3.10	m			
Depth to Induced Water					
Level	0.51	m			
Differential head at start (H _{o)}					
	2.59	m			
Diameter of Test Section	0.12	m			
Diameter of Measuring Tube	0.12	m			
Test Length (L)	0.05	m			
Area of Test Section (As)	1.13E-02	m ²			
Area of Measuring Tube (Af)	1.13E-02	m ²			

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	0.330	
Time (t1)	0.00	mins
Time (t2)	10.00	mins
Head at Time tI (HI)	2.590	m
Head at Time t2 (H2)	0.760	m
Permeability (k) =	7 00E-05	m/sec
A/(F[t2-	7.00E-05	111/360

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeability (B	orehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additional G	Bore Proje Test	hole ect No No	BH43 PE201677 3
Client	WSP UK Limited	Date		17/11/2020
Water P	Permeability Test in a Borehole using Ope	n Systems in accordance	with BS	EN ISO 22282-2:201

Borenole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467849.3
	N 99138.0
Level (m OD)	3.46

Test Measurements

Test Details						
Test Type	Variable Head - Falling					
Hydrogeological Conditions	Test Section Patially Saturated					
Type of Filter	None					
Isolation Device	None					
Test Section Dia. (m)	0.12					
Measuring Tube Dia. (m)	0.12					
Height of Casing / Datum above GL (m) = -0.45 (negative value if above ground)	Datum = Top of Casing					
	Depth to					
	Standing					

Depth to top

of Test Section

below GL (m

)=

2.60

Ý

	Depth of		Depth of	Datum a
Elapsed Time	Water below	Elapsed Time	Water below	(m
	Top of Casing	(Continued)	(continued)	(negative valu
			(continued)	-
(minutes)	(m)	(minutes)	(m)	
0.0	0.60			
0.5	0.77			
1.0	0.83			
1.5	0.97			Depth to bottom
2.0	1.09			below GL (m)=
2.5	1.21			Before 2.65
3.0	1.34			After 2.65
3.5	1.44			
4.0	1.61			
4.5	1.70			
5.0	1.80			
6.0	1.90			
7.0	2.03			
8.0	2.21			
9.0	2.26			Depth to Standing
10.0	2.35			Depth to Induced
11.0	2.47			Differential head
12.0	2.54			Differential Head
13.0	2.59			Time Elapsed at e
14.0	2.63			Weather during
15.0	2.68			Test Carried O
16.0	2.70			Test Checked B
				Description of

Ņ

Water

below GL

(m) =

Length of

Test Section

2.65

Standing WL

Project	Aquind Drainage Design Additional GI								Borehole Project No Test No		BH43 PE201677 3	
Client	WSP	' UK Limit	ed						Date		17/11/2020	
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	0.60	0.15	2.50	0.00		15.0	2.68	2.23	0.42	0.17	
	0.5	0.77	0.32	2.33	0.93		16.0	2.70	2.25	0.40	0.16	
	1.0	0.83	0.38	2.27	0.91							
	1.5	0.97	0.52	2.13	0.85							
	2.0	1.09	0.64	2.01	0.80							
	2.5	1.21	0.76	1.89	0.76							
	3.0	1.34	0.89	1.76	0.70							
	3.5	1.44	0.99	1.66	0.66			-				
	4.0	1.61	1.16	1.49	0.60							
	4.5	1.70	1.25	1.40	0.56							
	5.0	1.80	1.35	1.30	0.52							
	6.0	1.90	1.45	1.20	0.48							
	7.0	2.03	1.58	1.07	0.43							
	8.0	2.21	1.76	0.89	0.36							
	9.0	2.26	1.81	0.84	0.34							
	10.0	2.35	1.90	0.75	0.30							
	11.0	2.47	2.02	0.63	0.25							
	12.0	2.54	2.09	0.56	0.22							
	13.0	2.59	2.14	0.51	0.20							
	14.0	2.63	2.10	0.47	0.19	 						
					lime	(mi	nutes)					
3.0)	2	4	6	8		10	12	14	1	6 18	
2.5	• •											
2.0 -	•	L										
E		•										
H 1.5			' • •									
Heac			•	•								

Remarks and Additional Information

1.0

0.5

0.0

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

•

•

.

-

INSIT	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH43		
		Project No	PE201677		
		Test No	3.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	2.50	1.00	9.0	0.84	0.34			
0.5	2.33	0.93	10.0	0.75	0.30			
1.0	2.27	0.91	11.0	0.63	0.25			
1.5	2.13	0.85	12.0	0.56	0.22			
2.0	2.01	0.80	13.0	0.51	0.20			
2.5	1.89	0.76	14.0	0.47	0.19			
3.0	1.76	0.70	15.0	0.42	0.17			
3.5	1.66	0.66	16.0	0.40	0.16			
4.0	1.49	0.60						
4.5	1.40	0.56						
5.0	1.30	0.52						
6.0	1.20	0.48						
7.0	1.07	0.43						
8.0	0.89	0.36						

Type of Test	Variable H	ead - Falling
Depth to Standing Water		
Level	3.10	m
Depth to Induced Water		
Level	0.60	m
Differential head at start (H _{o)}		
	2.50	m
Diameter of Test Section	0.12	m
Diameter of Measuring Tube	0.12	m
Test Length (L)	0.05	m
Area of Test Section (As)	1.13E-02	m ²
Area of Measuring Tube (Af)	1.13E-02	m ²

Time at ratio H/Ho=.37 :	mins
--------------------------	------

VARIABLE HEAD TEST	(GENERAL	APPROACH
Shape factor (F)	0.330	
Time (t1)	0.00	mins
Time (t2)	8.00	mins
Head at Time tI (HI)	2.500	m
Head at Time t2 (H2)	0.890	m
Permeability (k) =	7 37E-05	mlsoc
A/(F[t2-	7.37E-05	III/Sec

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at base of hole.

INSIT	U TESTING - Permeability (Borehole)	Sheet I -	Form INS005 Rev 6 Test Details and Measured Values
Project	Aquind Drainage Design Additional GI	Borehole	BH43
		Project No	PE201677
		Test No	I
Client	WSP UK Limited	Date	17/11/2020
Water P	ermeability Test in a Borehole using Open Systems in a	ccordance with BS	EN ISO 22282-2:2012

Borehole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467849.3
	N 99138.0
Level (m OD)	3.46

-

-

Test Details							
Test Type		Variable Head - Falling					
Hydrogeological	Conditions	Test Section Patially Saturated					
Type of Filter		None					
Isolation Device		None					
Test Section Dia	ı. (m)	0.12					
Measuring Tube	Dia. (m)	0.12					
Height of Datum al (m) (negative value	Casing / bove GL) = -0.45 e if above ground)	∧ >	Datum = Top c Casing	of g			
Depth to bottom of Test Section below GL (m)= Before 2.65 After 2.65	Depth to top of Test Section below GL (m)= 2.60		Depth to Standing Water below GL (m) = 15.00 ✓ ✓ Standing WL –				
Depth to Standing Water Level below Depth to Induced Water Level below Differential head at start of Test (H_{o})			um 15.45 m um 0.77 m 14.68 m				
Differential Head	at end of Test (H	H _f)	12.72 m				
Time Elapsed at end of test (t _f) [4.							
Weather during	Test						

Test Meas	urements							
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Datum a (m (negative valu	f Casing / bove GL) = -0.45 e if above ground)	▼ >	Datum =	Top Casi
(minutes)	(m)	(minutes)	(m)			X	Depth t	to
0.0	0.77						Standin	g
0.5	1.23				Depth to top		Water	21
1.0	1.52				of Test Section	וו ו	(m) =	15.0
1.5	1.62			Depth to bottom)=			
2.0	I.78			below GL (m)=	2.60		↓ ↓ Star	nding WL
2.5	1.90			Before 2.65				
3.0	2.00			After 2.65				
3.5	2.10							
4.0	2.16					i		
4.5	2.23					v		
5.0	2.37						▲ Length	of
6.0	2.43						(m) =	0.05
7.0	2.51				\downarrow		, V	
8.0	2.57			_				
9.0	2.62			Depth to Standing	g Water Level b	elow Datu	m 15	.45 m
14.0	2.73			Depth to Induced	Water Level be	elow Datur	m 0	.77 m
				Differential head a	at start of Test ((H _{o)}	14	.68 m
				Differential Head	at end of Test (H _f)	12	.72 m
				Time Elapsed at e	nd of test (t _f)		Ŀ	4.0 mins
				Weather during	Test			
				Test Carried Ou	ut By	CJ		
				Test Checked B	у	AS		
				Description of T	Test Section	Light br coarse	rown gravelly SAND.	fine to

Geolech ,> geotechnical and geoenvironmental specialists

Project	t Aquind Drainage Design Additional GI						Borehole Project No		BH43 PE201677			
Client	WSF	'UK Limit	ed						Test No Date		ı 17/11/2020	
	Test Res	ults										
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	0.77	0.32	14.68	0.00							
	0.5	1.23	0.78	14.22	0.97							
	1.0	1.52	1.07	13.93	0.95							
	1.5	1.62	1.17	13.83	0.94							
	2.0	I.78	1.33	13.67	0.93							
	2.5	1.90	I.45	13.55	0.92							
	3.0	2.00	1.55	13.45	0.92							
	3.5	2.10	1.65	13.35	0.91							
	4.0	2.16	1.71	13.29	0.91							
	4.5	2.23	I.78	13.22	0.90							
	5.0	2.37	1.92	13.08	0.89							
	6.0	2.43	1.98	13.02	0.89							
	7.0	2.51	2.06	12.94	0.88							
	8.0	2.57	2.12	12.88	0.88							
	9.0	2.62	2.17	12.83	0.87							
	14.0	2.73	2.28	12.72	0.87							
					Time	(mi	nutes)					
15.0 -	0	2	4	6		8		10	12	14	16	
13.0												
14.5 -	•					-						
Ê 14.0	•											
, Ht (r	•											

INSITU TESTING - Permeability (Borehole)

Form INS005 Rev 6 Sheet 2 - Test Results

Head 13.5 • 13.0 • 12.5

Remarks and Additional Information

Results is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSITU	TESTING - Permeability (Bo	sheet 3	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH43			
		Project No	PE201677			
		Test No	1.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho		Time (mins)	Ht (m)	Ht/Ho
0.0	14.68	1.00	9.0	12.83	0.87				
0.5	14.22	0.97	14.0	12.72	0.87	1			
1.0	13.93	0.95				1			
1.5	13.83	0.94				1			
2.0	13.67	0.93							
2.5	13.55	0.92							
3.0	13.45	0.92							
3.5	13.35	0.91							
4.0	13.29	0.91							
4.5	13.22	0.90							
5.0	13.08	0.89							
6.0	13.02	0.89							
7.0	12.94	0.88							
8.0	12.88	0.88							

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (Borehole)	Form INS005 R Sheet I - Test Details and Measured V		
Project	Aquind Drainage Design Additional GI	Borehole	BH43	
		Project No Test No	PE201677 2	
Client	WSP UK Limited	Date	17/11/2020	
Water P	ermeability Test in a Borehole using Open Systems in a	ccordance with BS	EN ISO 22282-2:2012	

Borehole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467849.3
	N 99138.0
Level (m OD)	3.46

Test Details	
Test Type	Variable Head - Falling
Hydrogeological Conditions	Test Section Patially Saturated
Type of Filter	None
Isolation Device	None
Test Section Dia. (m)	0.12
Measuring Tube Dia. (m)	0.12

Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / Datum above GL (m) = -0.45 (negative value if above ground)
(minutes)	(m)	(minutes)	(m)	L Depth to
0.0	0.51			Standing
0.5	0.67			Depth to top Water
1.0	0.86			of Test Section (m) = 15.00
1.5	1.00			of Test Section)=
2.0	1.14			below GL (m)= 2.60 ↓ ↓ Standing WL
2.5	1.26			Before 2.65
3.0	1.39			After 2.65
3.5	1.50			
4.0	l.67			
4.5	1.72			₩ <u></u>
5.0	I.78			Length of Test Section
6.0	1.92			(m) = 0.05
7.0	2.07			↓
8.0	2.19			
9.0	2.24			Depth to Standing Water Level below Datum 15.45 m
10.0	2.34			Depth to Induced Water Level below Datum 0.51 m
11.0	2.45			Differential head at start of Test (H _{o)} I4.94 m
12.0	2.50			Differential Head at end of Test (H _f) I2.75 m
13.0	2.58			Time Elapsed at end of test (t _f) 16.0 mins
14.0	2.59			Weather during Test
15.0	2.65			Test Carried Out By CJ
16.0	2.70			Test Checked By AS
				Description of Test Section Light brown gravelly fine to coarse SAND.

Client WSP UK Limited Test Results Time (mins) Measure d Depth (m) Relative Depth (m bgl) Ht (m) ΔH (m) 0.0 0.51 0.06 14.94 0.00 0.5 0.67 0.22 14.78 0.99 1.0 0.86 0.41 14.59 0.98 1.5 1.00 0.55 14.45 0.97 2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95	Time (mins)	Measure d Depth	Date		17/11/2020
Test ResultsTime (mins)Measure d Depth (m)Relative Depth (m bgl)Ht (m) Δ H (m)0.00.510.0614.940.000.50.670.2214.780.991.00.860.4114.590.981.51.000.5514.450.972.01.140.6914.310.962.51.260.8114.190.95	Time (mins)	Measure d Depth	Rolative		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time (mins)	Measure d Depth	Rolative		
0.0 0.51 0.06 14.94 0.00 0.5 0.67 0.22 14.78 0.99 1.0 0.86 0.41 14.59 0.98 1.5 1.00 0.55 14.45 0.97 2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95	15.0	(m)	Depth (m bgl)	Ht (m)	ΔH (m)
0.5 0.67 0.22 14.78 0.99 1.0 0.86 0.41 14.59 0.98 1.5 1.00 0.55 14.45 0.97 2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95		2.65	2.20	12.80	0.86
1.0 0.86 0.41 14.59 0.98 1.5 1.00 0.55 14.45 0.97 2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95	16.0	2.70	2.25	12.75	0.85
1.5 1.00 0.55 14.45 0.97 2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95 3.0 1.39 0.94 14.04 0.94					
2.0 1.14 0.69 14.31 0.96 2.5 1.26 0.81 14.19 0.95 2.0 1.39 0.94 14.04 0.94					
2.5 1.26 0.81 14.19 0.95 2.0 1.28 0.04 14.04 0.04					
3.0 1.37 0.74 14.06 0.94					
3.5 1.50 1.05 13.95 0.93					
4.0 1.67 1.22 13.78 0.92					
4.5 1.72 1.27 13.73 0.92					
5.0 1.78 1.33 13.67 0.91					
6.0 1.92 1.47 13.53 0.91					
7.0 2.07 1.62 13.38 0.90					
8.0 2.19 1.74 13.26 0.89					
9.0 2.24 1.79 13.21 0.88					
10.0 2.34 1.89 13.11 0.88					
ll.0 2.45 2.00 l3.00 0.87					
12.0 2.50 2.05 12.95 0.87					
13.0 2.58 2.13 12.87 0.86					
14.0 2.59 2.14 12.86 0.86					
Time	(minutes)				
0 2 4 6 8	10	12	14	1	6 18
0.0					
15.0					
T •					
14.5					
E • ·		1	1		
L 14.0 D					

Remarks and Additional Information

13.5

13.0

12.5

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

•

•

•

Form INS005 Rev 6

INSITU	J TESTING - Permeability (Borehole	Sheet 3 - I	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH43			
		Project No	PE201677			
		Test No	2.000			
Client	WSP UK Limited	Date	17/11/2020			

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	14.94	1.00	9.0	13.21	0.88			
0.5	14.78	0.99	10.0	3.	0.88			
1.0	14.59	0.98	11.0	13.00	0.87			
1.5	14.45	0.97	12.0	12.95	0.87			
2.0	14.31	0.96	13.0	12.87	0.86			
2.5	14.19	0.95	14.0	12.86	0.86			
3.0	14.06	0.94	15.0	12.80	0.86			
3.5	13.95	0.93	16.0	12.75	0.85			
4.0	13.78	0.92						
4.5	13.73	0.92						
5.0	13.67	0.91						
6.0	13.53	0.91						
7.0	13.38	0.90						
8.0	13.26	0.89						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

INSIT	U TESTING - Permeability (I	Borehole)	Form I Sheet I - Test Details and M	NS005 Rev 6 easured Values
Project	Aquind Drainage Design Additional GI	Borehol	e BH43	
		Project l	No PE201677	7
		Test No	o 3	
Client	WSP UK Limited	Date	17/11/202	20
Water P	ermeability Test in a Borehole using Op	en Systems in accordance wi	ith BS EN ISO 222	282-2:201
Borehol	e Details	Test Details		

Borenole Details	
Inclination	Vertical
Method of Drilling	Dynamic Sampling
Co-ordinates (m)	E 467849.3
	N 99138.0
Level (m OD)	3.46

Test Details	
Test Type	Variable Head - Falling
Hydrogeological Conditions	Test Section Patially Saturated
Type of Filter	None
Isolation Device	None
Test Section Dia. (m)	0.12
Measuring Tube Dia. (m)	0.12
Height of Casing /	Top of

Test Meas	urements			
Elapsed Time	Depth of Water below Top of Casing	Elapsed Time (Continued)	Depth of Water below Top of Casing (continued)	Height of Casing / A Datum above GL Datum = Top of (m) = -0.45 (negative value if above ground)
(minutes)	(m)	(minutes)	(m)	L Depth to
0.0	0.60			Standing
0.5	0.77			Depth to top Water
1.0	0.83			of Test Section (m) = 15.00
1.5	0.97			Depth to bottom)=
2.0	1.09			below GL (m) = 2.60 ↓ ↓ Standing WL
2.5	1.21			Before 2.65
3.0	1.34			After 2.65
3.5	1.44			
4.0	1.61			
4.5	1.70			
5.0	1.80			↓ Length of
6.0	1.90			(m) = 0.05
7.0	2.03			
8.0	2.21			
9.0	2.26			Depth to Standing Water Level below Datum 15.45 m
10.0	2.35			Depth to Induced Water Level below Datum 0.60 m
11.0	2.47			Differential head at start of Test (H _{o)} I4.85 m
12.0	2.54			Differential Head at end of Test (H _r) I2.75 m
13.0	2.59			Time Elapsed at end of test (t _f) 16.0 mins
14.0	2.63			Weather during Test
15.0	2.68			Test Carried Out By CJ
16.0	2.70			Test Checked By AS
				Description of Test Section Light brown gravelly fine to coarse SAND.

roject	Aqui	nd Draina;	ge Design	Additiona	l GI	<u></u>			Borehole Project N	No	BH43 PE201672	<u>- Tes</u> 7
lient	WSF	UK Limit	ed						Test No Date		3 7/ /202	20
	Test Res	ults				_						
	Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)		Time (mins)	Measure d Depth (m)	Relative Depth (m bgl)	Ht (m)	ΔH (m)	
	0.0	0.60	0.15	14.85	0.00		15.0	2.68	2.23	12.77	0.86	
	0.5	0.77	0.32	14.68	0.99		16.0	2.70	2.25	12.75	0.86	
	1.0	0.83	0.38	14.62	0.98							
	1.5	0.97	0.52	14.48	0.98							
	2.0	1.09	0.64	14.36	0.97							
	2.5	1.21	0.76	14.24	0.96							
	3.0	1.34	0.89	4.	0.95							
	3.5	1.44	0.99	14.01	0.94							
	4.0	1.61	1.16	13.84	0.93							
	4.5	1.70	1.25	13.75	0.93							
	5.0	1.80	1.35	13.65	0.92							
	6.0	1.90	I.45	13.55	0.91							
	7.0	2.03	1.58	13.42	0.90							
	8.0	2.21	1.76	13.24	0.89							
	9.0	2.26	1.81	13.19	0.89							
	10.0	2.35	1.90	13.10	0.88							
	11.0	2.47	2.02	12.98	0.87							
	12.0	2.54	2.09	12.91	0.87							
	13.0	2.59	2.14	12.86	0.87							
	14.0	2.63	2.18	12.82	0.86							
					Time	(mi	nutes)					
0 15.0 1)	2	4	6	8		10	12	14	1	6	18
	•											
14.5 -	•											-
		•										
E 14.0 -		•										
-			T									

Head, 13.5 • • 13.0 . 12.5

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

Form INS005 Rev 6

INSIT	J TESTING - Permeability (Borehole)	Form INS005 Rev 6 Sheet 3 - Interpretation of Results (Page I)			
Project	Aquind Drainage Design Additional GI	Borehole	BH43		
		Project No	PE201677		
		Test No	3.000		
Client	WSP UK Limited	Date	17/11/2020		

Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho	Time (mins)	Ht (m)	Ht/Ho
0.0	14.85	1.00	9.0	13.19	0.89	(-)		
0.5	14.68	0.99	10.0	13.10	0.88			
1.0	14.62	0.98	11.0	12.98	0.87			
1.5	14.48	0.98	12.0	12.91	0.87			
2.0	14.36	0.97	13.0	12.86	0.87			
2.5	14.24	0.96	14.0	12.82	0.86			
3.0	4.	0.95	15.0	12.77	0.86			
3.5	14.01	0.94	16.0	12.75	0.86			
4.0	13.84	0.93						
4.5	13.75	0.93						
5.0	13.65	0.92						
6.0	13.55	0.91						
7.0	13.42	0.90						
8.0	13.24	0.89						

Remarks and Additional Information

Result is an approximation only and is not a true permeability as no water was encountered during drilling. Water assumed at 15m bgl.

APPENDIX 9

Trial Pit Soakaway Test Results

INSITU	TESTING -	Soakawa	y Test
--------	------------------	---------	--------

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

I

Trial Pit TP21 Test No Project No PE201667 Date 16/11/2020

TIME ground level (m) (m)	iead (%)
0.00 0.40 0.60	00.00
1.00 0.41 0.59 9	8.33
2.00 0.41 0.59 9	8.33
3.00 0.41 0.59 9	8.33
4.00 0.42 0.58 9	6.67
5.00 0.43 0.57 9	5.00
10.00 0.43 0.57 9	5.00
15.00 0.43 0.57 9	5.00
20.00 0.43 0.57 9	5.00
30.00 0.43 0.57 9	5.00
45.00 0.43 0.57 9	5.00
60.00 0.44 0.56 9	3.33
1320.00 0.64 0.36 6	0.00
1680.00 0.70 0.30 5	0.00

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.000	m
Effective depth (Head of Water)	=	0.600	m

Initial depth from GL	=	0.400m		
% of effective depth	Head (m)	Depth fror (m)	n GL	Time (mins)
75%	0.450	0.550		750.00
25%	0.150	0.850		2600.00
Vp75-25	=	0.360	m3	
ар50	=	2.760	m2	
tp75-25	=	1,850.000	min	
Soil Infiltration, f	=	1.18E-06	m/sec	

х х

Remarks Infiltration Rate estimated only by extrapolation. Sheet I

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP21
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	16/11/2020

tp75	=	750.00	
tp25	=	2600.00	

Geo

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

I

Trial Pit TP22 Test No Project No PE201667 Date 16/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.32	1.38	100.00
1.00	0.40	1.30	94.20
2.00	0.45	1.25	90.58
3.00	0.50	1.20	86.96
4.00	0.56	1.14	82.61
5.00	0.59	1.11	80.43
10.00	0.88	0.82	59.42
15.00	0.93	0.77	55.80
20.00	1.09	0.61	44.20
30.00	1.20	0.50	36.23
45.00	1.59	0.11	7.97

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.700	m
Effective depth (Head of Water)	=	1.380	m

Initial depth from GL	=	0.320m		
% of effective depth	Head (m)	Depth froi (m)	m GL	Time (mins)
75%	1.035	0.665		6.40
25%	0.345	1.355		36.00
Vp75-25	=	0.828	m3	
ар50	=	4.788	m2	
tp75-25	=	29.600	min	
Soil Infiltration, f	=	9.74E-05	m/sec	

Sheet I

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP22
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	16/11/2020

Remarks

-

Geot

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP22
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.51	1.19	100.00
1.00	0.57	1.13	94.96
2.00	0.61	1.09	91.60
3.00	0.63	1.07	89.92
4.00	0.65	1.05	88.24
5.00	0.68	1.02	85.71
10.00	0.79	0.91	76.47
15.00	0.88	0.82	68.91
20.00	0.96	0.74	62.18
30.00	1.14	0.56	47.06
60.00	1.51	0.19	15.97
90.00	1.70	0.00	0.00

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	I.700	m
Effective depth (Head of Water)	=	1.190	m

Initial depth from GL	=	0.510m		
% of effective depth	Head (m)	Depth from (m)	n GL	Time (mins)
75%	0.893	0.808		11.00
25%	0.298	1.403		51.50
Vp75-25	=	0.714	m3	
ар50	=	4.294	m2	
tp75-25	=	40.500	min	
Soil Infiltration, f	=	6.84E-05	m/sec	

Sheet I

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP22
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

tp25

=

11.00
51.50

Sheet 2

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP22
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.34	1.36	100.00
2.00	0.38	1.32	97.06
3.00	0.39	1.31	96.32
4.00	0.42	1.28	94.12
52.00	1.01	0.69	50.74
120.00	1.55	0.15	11.03

TRIAL PIT SOAKAWAY

1.360 m

=

Effective depth (Head of Water)

Initial depth from GL	=	0.340m		
% of effective depth	Head (m)	Depth fror (m)	m GL	Time (mins)
75%	1.020	0.680		25.00
25%	0.340	1.360		96.00
V _P 75-25	=	0.816	m3	
ар50	=	4.736	m2	
tp75-25	=	71.000	min	
Soil Infiltration, f	=	4.04E-05	m/sec	

Sheet I

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP22
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Sheet 2

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP23
		Test No	1
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.45	0.55	100.00
1.00	0.54	0.46	83.64
2.00	0.62	0.38	69.09
3.00	0.68	0.32	58.18
4.00	0.74	0.26	47.27
5.00	0.78	0.22	40.00
15.00	1.00	0.00	0.00
<u> </u>			

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.000	m
Effective depth (Head of Water)	=	0.550	m

Initial depth from GL	=	0.450m		
% of effective depth	Head (m)	Depth from (m)	m GL	Time (mins)
75%	0.413	0.588	}	1.60
25%	0.138	0.863		8.70
Vp75-25	=	0.330	m3	
ар50	=	2.630	m2	
tp75-25	=	7.100	min	
Soil Infiltration, f	=	2.95E-04	m/sec	

Geot

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP23
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

-

Geot

INSITU	TESTING - Soc	akaway Test
--------	----------------------	-------------

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

2

Trial Pit TP23 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.40	0.60	100.00
1.00	0.45	0.55	91.67
2.00	0.48	0.52	86.67
3.00	0.54	0.46	76.67
4.00	0.57	0.43	71.67
5.00	0.60	0.40	66.67
10.00	0.72	0.28	46.67
15.00	0.82	0.18	30.00
18.00	0.91	0.09	15.00
20.00	0.95	0.05	8.33

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.000	m
Effective depth (Head of Water)	=	0.600	m

Initial depth from GL	=	0.400m		
% of effective depth	Head (m)	Depth froi (m)	m GL	Time (mins)
75%	0.450	0.550		3.40
25%	0.150	0.850)	16.00
Vp75-25	=	0.360	m3	
ар50	=	2.760	m2	
tp75-25	=	12.600	min	
Soil Infiltration, f	=	I.73E-04	m/sec	

Sheet I

ଡେମ

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP23
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Geot

INSITU	TESTING - Soakaway Test	
--------	-------------------------	--

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

3

Trial Pit TP23 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.35	0.65	100.00
1.00	0.40	0.60	92.31
3.00	0.45	0.55	84.62
5.00	0.50	0.50	76.92
7.00	0.56	0.44	67.69
10.00	0.62	0.38	58.46
15.00	0.74	0.26	40.00
20.00	0.84	0.16	24.62
25.00	0.89	0.11	16.92
30.00	0.97	0.03	4.62

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.000	m
Effective depth (Head of Water)	=	0.650	m

Initial depth from GL	=	0.350m		
% of effective depth	Head (m)	Depth fror (m)	Depth from GL (m)	
75%	0.488	0.513		6.50
25%	0.163	0.838		19.80
Vp75-25	=	0.390	m3	
ар50	=	2.890	m2	
tp75-25	=	13.300	min	
Soil Infiltration, f	=	1.69E-04	m/sec	

Sheet I

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP23
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Project Aquind Drainage Design Additional GI

WSP UK Limited

Client

I

Trial Pit TP24 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.65	0.95	100.00
1.00	0.75	0.85	89.47
2.00	0.90	0.70	73.68
3.00	1.14	0.46	48.42
4.00	1.24	0.36	37.89
6.00	1.32	0.28	29.47
9.00	1.42	0.18	18.95
10.00	1.44	0.16	16.84

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.600	m
Effective depth (Head of Water)	=	0.950	m

Initial depth from GL	=	0.650m		
% of effective depth	Head (m)	Depth from GL (m)		Time (mins)
75%	0.713	0.888		2.00
25%	0.238	1.363		7.30
Vp75-25	=	0.570	m3	
ар50	=	3.670	m2	
tp75-25	=	5.300	min	
Soil Infiltration, f	=	4.88E-04	m/sec	

Sheet I

ଡେମ

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP24
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Remarks

INSITU TESTING - Soakaway	Test
---------------------------	------

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

2

Trial Pit TP24 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.40	1.20	100.00
1.00	0.52	1.08	90.00
2.00	0.60	1.00	83.33
3.00	0.68	0.92	76.67
4.00	0.76	0.84	70.00
5.00	0.82	0.78	65.00
10.00	1.15	0.45	37.50
15.00	1.26	0.34	28.33
17.00	1.32	0.28	23.33
20.00	1.42	0.18	15.00
25.00	1.50	0.10	8.33

TRIAL PIT SOAKAWAY

=	2.000	m
=	0.600	m
=	1.600	m
=	1.200	m
	= = =	= 2.000 = 0.600 = 1.600 = 1.200

Initial depth from GL	=	0.400m		
% of effective depth	Head (m)	Depth from GL (m)		Time (mins)
75%	0.900	0.700		3.25
25%	0.300	1.300		16.40
Vp75-25	=	0.720	m3	
ар50	=	4.320	m2	
tp75-25	=	13.150	min	
Soil Infiltration, f	=	2.11E-04	m/sec	

Sheet I

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP24
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Remarks

WSP UK Limited

Project Aquind Drainage Design Additional GI

Client

3

Trial Pit TP24 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.49	1.11	100.00
1.00	0.54	1.06	95.50
2.00	0.59	1.01	90.99
3.00	0.67	0.93	83.78
4.00	0.74	0.86	77.48
5.00	0.82	0.78	70.27
6.00	0.90	0.70	63.06
10.00	1.02	0.58	52.25
18.00	1.28	0.32	28.83
20.00	1.32	0.28	25.23
22.00	1.37	0.23	20.72

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.600	m
Effective depth (Head of Water)	=	1.110	m

Initial depth from GL	=	0.490m		
% of effective depth	Head (m)	Depth from GL (m)		Time (mins)
75%	0.833	0.768		5.40
25%	0.278	1.323		20.00
Vp75-25	=	0.666	m3	
ар50	=	4.086	m2	
tp75-25	=	14.600	min	
Soil Infiltration, f	=	I.86E-04	m/sec	

Sheet I

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP24
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Sheet 2

NSITU	TESTING - Soakaway Test	

Project Aquind Drainage Design Additional GI

WSP UK Limited

Client

I

Trial Pit TP25 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins) DEPTH of water below ground level (m)		HEAD (m)	HEAD (%)
0.00	0.31	2.19	100.00
1.00	0.33	2.17	99.09
2.00	0.35	2.15	98.17
3.00	0.38	2.12	96.80
4.00	0.40	2.10	95.89
5.00	0.48	2.02	92.24
6.00	0.46	2.04	93.15
10.00	0.69	1.81	82.65
15.00	0.78	1.72	78.54
45.00	1.00	1.50	68.49

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.500	m
Effective depth (Head of Water)	=	2.190	m

Initial depth from GL	=	0.310m		
% of effective depth	Head (m)	Depth from (m)	n GL	Time (mins)
75%	1.643	0.858		
25%	0.548	1.953		
Vp75-25	=		m3	
ар50	=		m2	
tp75-25	=		min	
Soil Infiltration, f	=	*	m/sec	

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP25
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Sheet 2

UIISIIU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP25
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.32	2.18	100.00
15.00	0.42	2.08	95.41
20.00	0.49	2.01	92.20
25.00	0.58	1.92	88.07
60.00	0.69	1.81	83.03
90.00	0.85	1.65	75.69

CITLL TEATING

-

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.500	m
Effective depth (Head of Water)	=	2.180	m

Initial depth from GL	=	0.320m		
% of effective depth	Head (m)	Depth from (m)	n GL	Time (mins)
75%	1.635	0.865		
25%	0.545	1.955		
Vp75-25	=		m3	
ар50	=		m2	
tp75-25	=		min	
Soil Infiltration, f	=	*	m/sec	

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP25
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Remarks Unable to claculate infiltration rate due to slow rate of soakage.

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP25
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

. **T**.

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.30	2.20	100.00
12.00	0.35	2.15	97.73
20.00	0.43	2.07	94.09
25.00	0.46	2.04	92.73
60.00	0.66	l.84	83.64
90.00	0.87	1.63	74.09
	1		

CITIL TECTINIC

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.500	m
Effective depth (Head of Water)	=	2.200	m

Initial depth from GL	=	0.300m		
% of effective depth	Head (m)	Depth from (m)	n GL	Time (mins)
75%	1.650	0.850		
25%	0.550	1.950		
Vp75-25	=		m3	
ар50	=		m2	
tp75-25	=		min	
Soil Infiltration, f	=	*	m/sec	

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP25
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Geo

NSITU	TESTING -	Soakaway	Test
-------	------------------	----------	------

Project Aquind Drainage Design Additional GI

WSP UK Limited

Client

I

Trial Pit TP26 Test No Project No PE201667 Date 17/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	2.00	0.50	100.00
1.00	2.04	0.46	92.00
2.00	2.08	0.42	84.00
3.00	2.10	0.40	80.00
4.00	2.16	0.34	68.00
5.00	2.18	0.32	64.00
10.00	2.27	0.23	46.00
15.00	2.37	0.13	26.00

TRIAL PIT SOAKAWAY

=	2.000	m
=	0.600	m
=	2.500	m
=	0.500	m
	= = =	= 2.000 = 0.600 = 2.500 = 0.500

Initial depth from GL	=	2.000m		
% of effective depth	Head (m)	Depth froi (m)	m GL	Time (mins)
75%	0.375	2.125		3.50
25%	0.125	2.375		15.50
Vp75-25	=	0.300	m3	
ар50	=	2.500	m2	
tp75-25	=	12.000	min	
Soil Infiltration, f	=	1.67E-04	m/sec	

Sheet I

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP26
		Test No	L. L.
		Project No	PE201667
Client	WSP UK Limited	Date	17/11/2020

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP26
		Test No	2
		Project No	PE201667

WSP UK Limited Client

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.51	0.99	100.00
1.00	1.61	0.89	89.90
3.00	I.70	0.80	80.81
10.00	2.10	0.40	40.40
34.00	2.50	0.00	0.00

TRIAL PIT SOAKAWAY

Date

=	2.000	m
=	0.600	m
=	2.500	m
=	0.990	m
	= = =	= 2.000 = 0.600 = 2.500 = 0.990

Initial depth from GL	=	1.510m		
% of effective depth	Head (m)	Depth froi (m)	m GL	Time (mins)
75%	0.743	1.758		4.00
25%	0.248	2.253		19.20
Vp75-25	=	0.594	m3	
ар50	=	3.774	m2	
tp75-25	=	15.200	min	
Soil Infiltration, f	=	I.73E-04	m/sec	

18/11/2020

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP26
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

INSIIU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP26
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.48	1.02	100.00
2.00	1.56	0.94	92.16
4.00	1.77	0.73	71.57
6.00	l.86	0.64	62.75
35.00	2.50	0.00	0.00

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	2.500	m
Effective depth (Head of Water)	=	1.020	m

Initial depth from GL	=	I.480m		
% of effective depth	Head (m)	Depth fron (m)	n GL	Time (mins)
75%	0.765	1.735		3.80
25%	0.255	2.245		23.50
Vp75-25	=	0.612	m3	
ар50	=	3.852	m2	
tp75-25	=	19.700	min	
Soil Infiltration, f	=	1.34E-04	m/sec	

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP26
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

tp75	=	3.80
tp25	=	23.50

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP27
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	17/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	1.30	0.26	100.00
1.00	1.34	0.22	84.62
2.00	1.37	0.19	73.08
3.00	1.40	0.16	61.54
4.00	1.44	0.12	46.15
5.00	1.44	0.12	46.15
10.00	1.52	0.04	15.38

TRIAL PIT SOAKAWAY

=	2.000	m
=	0.600	m
=	1.560	m
=	0.260	m
	= = =	= 2.000 = 0.600 = 1.560 = 0.260

Initial depth from GL	=	1.300m		
% of effective depth	Head (m)	Depth fror (m)	n GL	Time (mins)
75%	0.195	1.365		1.80
25%	0.065	1.495		8.45
Vp75-25	=	0.156	m3	
ар50	=	1.876	m2	
tp75-25	=	6.650	min	
Soil Infiltration, f	=	2.08E-04	m/sec	

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP27
		Test No	I
		Project No	PE201667
Client	WSP UK Limited	Date	17/11/2020

Remarks

-

INSITU	TESTING - Soakaway Test	Form
Project	Aquind Drainage Design Additional GI	Trial Pit
		Test No
		Project No

Client WSP UK Limited

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.73	0.83	100.00
1.00	0.90	0.66	79.52
3.00	1.09	0.47	56.63
6.00	1.20	0.36	43.37
9.00	1.30	0.26	31.33
11.00	1.34	0.22	26.51
17.00	1.48	0.08	9.64

TRIAL PIT SOAKAWAY

Date

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.560	m
Effective depth (Head of Water)	=	0.830	m

Initial depth from GL	=	0.730m		
% of effective depth	Head (m)	Depth from GL (m)		Time (mins)
75%	0.623	0.938		1.45
25%	0.208	1.353		11.50
Vp75-25	=	0.498	m3	
ар50	=	3.358	m2	
tp75-25	=	10.050	min	
Soil Infiltration, f	=	2.46E-04	m/sec	

Geot

Remarks

TP27 2

PE201667

18/11/2020

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP27
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

up/5 – 1. 4 5
tp25 = 11.50

Remarks

-

INSITU	TESTING - Soakaway Test	
Project	Aquind Drainage Design Additional GI	Tria

3

Trial Pit TP27 Test No Project No PE201667 Date 18/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.54	1.02	100.00
1.00	0.67	0.89	87.25
2.00	0.76	0.80	78.43
3.00	0.86	0.70	68.63
4.00	0.92	0.64	62.75
5.00	0.97	0.59	57.84
10.00	1.02	0.54	52.94
16.00	1.45	0.11	10.78

WSP UK Limited

TRIAL PIT SOAKAWAY

Trial pit length	=	2.000	m
Trial pit width	=	0.600	m
Trial pit depth	=	1.560	m
Effective depth (Head of Water)	=	1.020	m

Initial depth from GL	=	0.540m		
% of effective depth	Head (m)	Depth fror (m)	n GL	Time (mins)
75%	0.765	0.795		2.30
25%	0.255	1.305	1.305	
Vp75-25	=	0.612	m3	
ар50	=	3.852	m2	
tp75-25	=	11.700	min	
Soil Infiltration, f	=	2.26E-04	m/sec	

Remarks

Client

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP27
		Test No	3
		Project No	PE201667
Client	WSP UK Limited	Date	18/11/2020

Remarks

-

WSP UK Limited

Aquind Drainage Design Additional GI Project

Client

I

Trial Pit TP28 Test No Project No PE201667 Date 19/11/2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.89	0.81	100.00
1.00	0.79	0.91	112.35
2.00	1.01	0.69	85.19
3.00	1.08	0.62	76.54
5.00	1.19	0.51	62.96
10.00	1.31	0.39	48.15
17.00	1.50	0.20	24.69

TRIAL PIT SOAKAWAY

m
m
m

Initial depth from GL	=	0.890m		
% of effective depth	Head (m)	Depth from (m)	m GL	Time (mins)
75%	0.608	1.093		3.30
25%	0.203	1.498	l.498	
Vp75-25	=	0.535	m3	
ар50	=	3.588	m2	
tp75-25	=	13.600	min	
Soil Infiltration, f	=	I.83E-04	m/sec	

Sheet I

Geot

Remarks

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP28
		Test No	L.
		Project No	PE201667
Client	WSP UK Limited	Date	19/11/2020

tp75	=	3.30	
tp25	=	16.90	

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP28
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	3/ /2020

ELAPSED TIME (mins)	DEPTH of water below ground level (m)	HEAD (m)	HEAD (%)
0.00	0.75	0.85	100.00
1.00	0.85	0.75	88.24
2.00	0.91	0.69	81.18
3.00	0.99	0.61	71.76
6.00	1.09	0.51	60.00
11.00	1.21	0.39	45.88
13.00	1.23	0.37	43.53

TRIAL PIT SOAKAWAY

Trial pit length	=	2.200	m
Trial pit width	=	1.000	m
Trial pit depth	=	1.600	m
Effective depth (Head of Water)	=	0.850	m

Initial depth from GL	=	0.750m		
% of effective depth	Head (m)	Depth from (m)	m GL	Time (mins)
75%	0.638	0.963	}	2.75
25%	0.213	1.388	3	25.00
Vp75-25	=	0.935	m3	
ар50	=	4.920	m2	
tp75-25	=	22.250	min	
Soil Infiltration, f	=	1.42E-04	m/sec	

Remarks

Trial Pit collapsed prior to end of soakaway test. Infiltration Rate is approximate only based on extrapolated value.

ଡେମ

INSITU	TESTING - Soakaway Test		Form INS009 Rev 7
Project	Aquind Drainage Design Additional GI	Trial Pit	TP28
		Test No	2
		Project No	PE201667
Client	WSP UK Limited	Date	3/ /2020

tp25 = 25.00	tp75	=	2.75
	tp25	=	25.00

Remarks

Trial Pit collapsed prior to end of soakaway test. Infiltration Rate is approximate only based on extrapolated value.

Sheet 2

Geo

APPENDIX 10

Geotechnical Laboratory Testing Results

Issued:

Certificate Number 20-25331

Client MATTest Ltd. 10 Queenslie Point 120 Stepps Road Glasgow G33 3NQ

- Our Reference 20-25331
- *Client Reference* 20/1161
 - Order No MATSC3205
 - Contract Title Aquind Drainage Design
 - Description 2 Soil samples.
 - Date Received 10-Dec-20
 - Date Started 10-Dec-20
- Date Completed 16-Dec-20
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

16-Dec-20

Summary of Chemical Analysis Soil Samples

Our Ref 20-25331 Client Ref 20/1161 Contract Title Aquind Drainage Design

			Lab No	1775018	1775019
		.Sa	ample ID	TP26	TP26
			Depth	0.50	1.50
			Other ID		
		Sam	ple Type	SOIL	SOIL
		Sampl	ing Date	n/s	n/s
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Inorganics					
рН	DETSC 2008#		pН	7.1	7.8
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	14	14

Information in Support of the Analytical Results

Our Ref 20-25331 Client Ref 20/1161 Contract Aquind Drainage Design

Containers Received & Deviating Samples

		Date	•		Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1775018	TP26 0.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
1775019	TP26 1.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
Kow D. Dlact	ic T Tub				

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

LABORATORY TEST CERTIFICATE

Certificate No :	20/1161 - 01	120 Stepps Road Glasgow G33 3NQ	
To :	Anne Simpson		
Client :	Geotechnics Limited	Tel: 0141 774 4032	
	The Geotechnical Centre Unit 5 Orchard Road, Heron Road Sowton Industrial Estate	email: info@mattest.org Website: www.mattest.org	
	Exeter, Devon EX2 7NR		

Dear Sirs,

LABORATORY TESTING OF SOIL

Introduction

We refer to samples taken from Aquind Drainage Design, Additional Investigation and delivered to our laboratory on 07th December 2020.

Material & Source

Sample Reference	:	See Report Plates
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	See Report Plates
Description	:	See Page 2 to Page 3 inclusive
Date Sampled	:	Not Supplied
Date Tested	:	07th December 2020 Onwards
Source	:	PE201667 - Aquind Drainage Design, Additional Investigation

Test Results;

As Detailed On Page 2 to Page 34 inclusive

Comments;

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

Remarks;

Approved for Issue

T McLelland (Director)

Date

22/12/2020

test Lin

Queenslie Industrial Estate

materials testing 8

10 Queenslie Point

TRIAL PIT	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
TP21	D	0.50	Brown gravelly slightly sandy silty CLAY. Gravel is fine to coarse.
TP21	LB	0.50-1.00	Brown gravelly very sandy very silty CLAY. Gravel is fine to coarse.
TP22	D	1.50	Off-white clayey fine to coarse highly weathered CHALK.
TP24	LB	0.45-1.60	Off-white clayey fine to coarse highly weathered CHALK.
TP25	LB	0.20-1.00	Brown very gravelly slightly sandy very silty CLAY with root fibres. Gravel is fine to coarse.
TP25	D	0.50	Brown gravelly slightly sandy silty CLAY. Gravel is fine to medium.
TP26	В	1.00-1.50	Off-white clayey fine to coarse highly weathered CHALK.
TP26	D	1.50	Off-white clayey fine to coarse highly weathered CHALK.
TP26	D	2.00-2.50	Off-white clayey fine to coarse highly weathered CHALK.
TP27	LB	0.30-0.60	Brown gravelly slightly sandy silty CLAY. Gravel is fine to coarse.
TP27	В	1.00-1.50	Off-white clayey fine to coarse highly weathered CHALK.
TP27	D	1.30	Off-white clayey fine to coarse highly weathered CHALK.
TP28	В	0.30-1.00	Brown fine to coarse SAND and GRAVEL.
TP28	В	1.00-1.70	Brown fine to coarse SAND and GRAVEL with chalk fragments.

SUMMARY OF SAMPLE DESCRIPTIONS

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
BH40	D	0.50	Brown gravelly slightly sandy silty CLAY. Gravel is fine to medium.
BH40	В	0.60-1.00	Brown slightly gravelly slightly sandy very silty CLAY with chalk fragments. Gravel is fine to coarse.
BH40	В	1.50-3.00	Off-white clayey fine to coarse highly weathered CHALK.
BH41	В	1.40-2.00	Off-white clayey fine to coarse highly weathered CHALK.
BH41	В	2.20-4.50	Off-white very clayey fine to coarse highly weathered CHALK.
BH41	UT	3.20-3.80	Off-white very clayey fine to coarse highly weathered CHALK.
BH41	В	4.50-5.50	Off-white very clayey fine to coarse highly weathered CHALK.
BH42	В	1.48-2.20	Off-white very clayey fine to coarse highly weathered CHALK.
BH42	D	1.48-1.60	Off-white very clayey fine to coarse highly weathered CHALK.
BH42	В	2.70-4.00	Off-white very clayey fine to coarse highly weathered CHALK.
BH42	UT	4.50-5.10	Off-white clayey fine to coarse highly weathered CHALK.
BH42	D	5.90-6.10	Off-white clayey fine to coarse highly weathered CHALK.
BH42	DSPT	6.10-6.55	Off-white clayey fine to coarse highly weathered CHALK.
BH43	В	0.30-0.40	Reddish brown very silty fine to coarse CRUSHED ROCK / BLAES.
BH43	В	1.20-3.00	Brown fine to coarse SAND and GRAVEL with chalk fragments.

SUMMARY OF SAMPLE DESCRIPTIONS

TRIAL PIT	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
TP21	D	0.50	22
TP25	D	0.50	21
TP26	D	1.50	27
TP28	В	0.30-1.00	2.2

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	MOISTURE CONTENT (%)
BH40	D	0.50	22
BH41	UT	3.20-3.80	18
BH42	D	1.48-1.60	26
BH42	D	5.90-6.10	28
BH43	В	0.30-0.40	6.9
BH43	В	1.20-3.00	7.6

Tested in accordance with BS 1377: Part 2: 1990: Clause 3

SUMMARY OF MOISTURE CONTENT TEST RESULTS

Symbol	Trial Pit	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	TP21	D	0.50	22	41	23	18	62	Clay with intermediate plasticity
•	TP25	D	0.50	21	37	19	18	71	Clay with intermediate plasticity
	TP26	D	1.50	27	31	22	9	83	Clay with low plasticity
•									
\diamond									
Δ									
0									
×									
*									

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were washed on a 0.425mm test sieve prior to test.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

Symbol	Borehole	Sample	Depth	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% Passing 0.425mm Sieve	Remarks
	BH40	D	0.50	22	32	21	11	63	Clay with low plasticity
•	BH42	D	1.48-1.60	26	30	22	8	56	Clay with low plasticity
	BH42	D	5.90-6.10	28	30	21	9	94	Clay with low plasticity
	BH43	В	1.20-3.00	7.6	25	Non Plastic	Non Plastic	27	
\diamond									
Δ									
0									
×									
*									

All samples were tested in accordance with BS 1377 : Part 2 : 1990 Clause 4.3, 5.3 and 5.4. All samples were washed on a 0.425mm test sieve prior to test.

SUMMARY OF ATTERBERG LIMITS TEST RESULTS

Boreho	ole					TP	21																						
Sample	е					L	B																						
Depth	(m)				0.	.50-	1.0	0																					
	-	-												_							_								
		FIN	E	M	EDIUM	c	OAR	SE		FINE	N	IED	IUM	(COARSI	=	FINE		М	EDIUM	CC	DARS	SE						
	CLAY				SILT	_						SAN							G	RAV/EI				CC	BBLES	E	BOUL	.DER	S
100																													
100																							1						
90																							++-						
80																_													
00																													
୍ଚି 70											Γ	1							\square				++	\square					
) BC 60										/																			
SSII																													
د 50											_	_																	
age																													
tient 40																													
05 aC											_																		
ш																													
20																													
10																													
0		02	0.0	06	0	02		0.0	6	(12		(16		2		6		2	20		60			30	0		
	0.0	02	0.0	00	0.	.02		0.0	Ū	,	0.2		Pai	rticle	e Size (mm)		0		-			00			00			
	SIEVING																			SED	DIME	NT	AT	10	N				
				Perc	entac	ne F	Das	sina	ıL	Spe	ecifi	cat	ion																
Sieve	e Size	(mm)	<u>ا</u>	010	/0 /0	ر مر %۱	uu	onig	Ľ	Not	Ap	plic	abl	е		Parti	cle	Size	e (r	nm)		P	Perc	cen	ntage	Pas	sing	g (%)
					()	/0)			l	_ower	%	Up	эре	er %	, 0														
	500.0				1	00				-			-				0.	020)						4	7			
	300.0				1	00				-			-				0.	006	6						4	1			
	125.0				1	00				-			-				0.	002	2						3	3			
	90.0				1	00				-			-																
	75.0				1	00				-			-			GRA	۱D	١G	CL	.ASSI	FIC	ATI	ON	l (S	SHW 1	ГАВ	LE	6/2)	
	63.0				1	00				-			-									_							
	50.0				1	00				-			-									-							
	37.5				ç	93				-			-		Grad	ling cla	assifi	cati	on p	proves	the m	ater	ial h	nas	met the	e rele	van	t gra	ding
	28.0				ç	92				-			-		requ	Iremer		nly.	Fur	ther tes	sting I	may	be	requ	uired to	asse	ess		
	20.0				ç	92				-			-		COIN	Jiance		135	100.										
	14.0				ç	91				-			-																
	10.0				8	39				-			-					Ρ	PEF	RCEN	TAG	E S	SO	LI	TYPE	S			
	6.30				8	37				-			-					511	т:		ΣΔ ΝΙ		C	R۸	VEI	ſ		RI	=s
	5.00				8	37				-			-		Ŭ				••			U	U			0		DLI	_0
	3.35				8	35				-			-			33		2	22		29			1	6			0	
	2.00				8	34				-			-																
	1.18				8	32				-			-		UN	FOR	MIT	Y (co	EFFIC	CIEN	IT (SH	W	TABL	.E 6	/1 N	IOT	E 5)
	0.600				8	31				-			-				110					-	60						
	0.425				7	79			Ι	-			-			I	010						00			Sp	ecit	ficat	tion
	0.300				7	74			Γ	-			-				-						-						
	0.212				7	2			Ι	-			-		UN	FOR	МІТ	Y (0	EFFIC	IEN	Т			-			-	
	0.150				6	60				-			-																
	0.063				5	55				-			-																

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 9 of 34

Certificate Number 20/1161 - 01

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 11 of 34

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 12 of 34

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 13 of 34

Certificate Number 20/1161 - 01

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Boreho	ole			E	3H40																							
Sample	e				В																							
Depth	(m)			0.6	60-1.0	00																						
									1							1								1				
		FINE	MED	DIUM	COA	RSE	I	FINE	ME	DIU	м	C	OARSE	F	INE		M	EDIUM	COA	RSE		~~~			~			
			S	ILT					s	AND)						GF	RAVEL			٦ '	COE	3BLE2	В	OUL	DEF	(5	
100														<u> </u>							<u> </u>	T T T	-					
90									_					-	+		T											
80													-															
7 70																												
%) 70																												
19 No.										_			+ +		_						+				_	++		
se co																												
ge I																												
40 guta													-									++						
0 0 30																												
٩, 00																												
20											++				-		++-									+		
10																												
10																												
0	0.002		006		2			0	2			6				6		20			60			30				
	0.002	. 0.	000	0.0	2	0.00	J	0.	2	F	Parti	cle	Size (m	n)		0		20)		00			30	0			
													-															
	SIEVING						-											SED	MEN	ITA	TI	ON						
			Perce	entade	e Pas	ssina		Speo	cifica	atic	on					_												
Sieve	e Size (n	nm)		(%	5) 5)	g	_	Not A	\ppl	ica	ble		Pa	artic	e S	Size	e (n	חm)		Pe	erce	ent	tage F	Pass	sing	ı (%	ó)	
				(.,		L	ower %	% l	Jpp	per	%																
	500.0			10	0			-			-				0.0)20			_				62	2				
	300.0			10	0			-			-				0.0	006							43	3				
	125.0			10	0			-			-				0.0	002							29)				
	90.0			10	0			-			-						~	A 0.01		TIC		(0)			-	~ 10	<u>, </u>	
	75.0			10	0			-			-		G	IRA	JIN	IG	CL	ASSI		пс	N	(S	HVVI	ABI	_E	6/2)	
	63.0			10	0			-			-		4						-									
	27 F			10	2		-	-	-		-		Gradin		cifi	catio	n r	rovec #		toria	al bo	ae n	net the	rela	vant	arc	dina	_
	280			90	5		┝	-	+		-		require	ment	s or	ly. F	urt	her test	ing ma	ay b	e re	equi	ired to	asse	SS	yız	uny	
 	20.0			90	2		-	-	+		-		complia	ance	with	SH	W.		0	, -	-		-	-				
	14 0			92 0'	<u>-</u> 2		┢	-	+		-																	
	10.0			92	<u>-</u>)			-			-					P	FR	CENT		S		т	VPES					
 	6.30			80	<u>,</u>		┢	-	+		-														-			
	5.00			89	<u>,</u>			-			-		CLA	١Y		SIL	ΤŦ	S	AND		GR	RA	VEL	C	ОВ	BL	ES	
	3.35			88	3		\vdash	-	╉		-		29)	\vdash	5	4		5	+		12	2		(0		
	2.00			88	3		t	-	+		-				1		•		-				1			-		
<u> </u>	1.18			8	7		1	-			-		UNIF	ORN	1IT	YC	:01	EFFIC	IENT	(S	HV	N T	ABL	E 6/	1 N	101	TE 5)
	0.600			86	3		T	-	╈		-						-				•	-	Ī					1
	0.425			86	3			-	\top		-			D	10					D6	U			Spe	ecif	ica	tior	1
	0.300			86	3			-			-		1		-					-				•				
	0.212			86	3			-			-		UNIF	ORN	IIT	YC	O	FFIC	IENT			-	$\neg \uparrow$			-		
	0.150			85	5		1	-			-		1															
	0.063			83	3			-			-		1															

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 15 of 34

Certificate Number 20/1161 - 01

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Remarks

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 17 of 34

Certificate Number 20/1161 - 01

Boreho	ole						ΒH	42]																		
Sample	Э						DS	PT																							
Depth	(m)					6.	10-	6.55	5																						
	_						_		-			_					-			T											
			FINE		ME	DIUM	C	OARS	SE		FINE	1	MED	IUM		COARSE		FIN	Е	N	IEDIUM	co/	ARS	Е							
	CLAY					SILT	-					-	SAI	ND	-					G	RAVEI				CC	OBBLES	E	BOUL	DEF	RS	
100																						_					<u> </u>		-		
90													-																		-
80																															
00																															
्र 70																															-
) b c																															
Issi																															
د 50												_	_						$\rightarrow \rightarrow$				_							+	-
age																															
tue:																															
Je 30													_																		4
ш																															
20																															
10																															4
0	0.0	002	(0 00	6	0.0	02		0.06	3	(12		0) 6		2		6	;	2	0	_	60			30	00			-
	0.	002		0.00	0	0.			0.00					Par	ticle	e Size (m	īm)		Ŭ		-	0		00			0.				
														-																	
	SIEVING																		SED	IME	NT	AT	10	Ν							
				P	erc	entad	ie F	ass	ina		Spe	ecif	icat	ion																	
Sieve	e Size	(m	m)	.	0.0	(9) (9)	(a)		g		Not	Ар	plic	able	Э	_ P	artio	cle	Siz	e (I	mm)		Ρ	erc	cer	ntage I	Pas	sing	ı (%	6)	
						()	•)			L	ower	%	U	ope	r %)															
	500.0)				10	00				-			-				0	.020)						52	2				
	300.0)				10	00				-			-				0	.006	6						38	8				
	125.0)				10	00				-			-				0	.002	2						14	4				
	90.0					1(00				-			-																	
	75.0					1(00				-			-		(GRA	١D	NG	CL	ASSI	FICA	TIC	ЗN	(S	SHW T	ΆB	LE	6/2	2)	
	63.0					10	00				-			-									-								
	50.0					10	00				-			-																	
	37.5					10	00				-			-		Gradir	ng cla	issi	ficati	ion I	proves th	he ma	ateri	al h	as	met the	e rele	vant	gra	adin	g
	28.0					10	00				-			-		require	emen	its c	วทเง. หม ดเ	⊢ur ⊣\∧/	ther test	ing m	iay i	be r	eq	uired to	ass	ess			
	20.0					9	7				-			-		compi		, vvi	ai 01	198.											
	14.0					9	4				-			-																	
	10.0					9	3				-			-					F	PEF	RCENT	ſAG	E S	0	Γ.	TYPE	S				
	6.30					9	0				-			-		- CI	ΔΥ		SII	т :	Ŧ s	ΔΝΓ	5	GI	R۵	VFI	С	OB	BI	FS	
	5.00					8	8				-			-					011				-	0.			Ŭ	00			·
	3.35					8	5				-			-		1	4		2	17		20		-	1	9			0		
	2.00					8	1				-			-																	
	1.18					7	7				-			-		UNIF	OR	MI	TY	co	EFFIC	IEN.	T (S	SH	W	TABL	E 6	/1 N	101	ΓE	5)
	0.600)				7	2				-			-			r	11	0				٩	60							
	0.425	5				7	0				-			-				- 11	-				20				Sp	ecif	ica	tio)n
	0.300)				6	8				-			-				-					-								
	0.212	2				6	7				-			-		UNIF	OR	MI	TY	co	EFFIC	IEN	Γ			-			-		
	0.150)				6	5				-			-																	
	0.063	3			_	6	1				-	_		-	_																

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

SIEVE ANALYSIS AND SEDIMENTATION - BS 1377 : PART 2 : 1990 : CLAUSE 9.2 & 9.4

Page 18 of 34

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Remarks

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Tested in accordance with BS 1377 : Part 4 : 1990

Tested in accordance with BS 1377 : Part 4 : 1990

Tested in accordance with BS 1377 : Part 4 : 1990

Tested in accordance with BS 1377 : Part 4 : 1990

Tested in accordance with BS 1377 : Part 4 : 1990

TRIAL PIT	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	M.C.V.
TP24	LB	0.45-1.60	11	27.0 28.3 29.0 30.2 31.4	12.5 8.3 6.6 3.8 1.0

*Material Passing 20mm sieve, separate samples used for each point Tested in accordance with BS 1377: Part 4 : 1990: Clause 5.5

SUMMARY OF MOISTURE CONDITION TEST RESULTS

Page 26 of 34

TRIAL PIT	SAMPLE	DEPTH (m)	% MATERIAL GREATER THAN 20mm	MOISTURE CONTENT (%)	M.C.V.
TP26	В	1.00-1.50	40	23.2 24.4 25.4 26.5 27.8	15.1 12.8 10.0 6.3 3.3

*Material Passing 20mm sieve, separate samples used for each point Tested in accordance with BS 1377: Part 4 : 1990: Clause 5.5

SUMMARY OF MOISTURE CONDITION TEST RESULTS

Page 27 of 34

		Failure Conditions		
Cell pressure	kPa	50	100	200
Membrane correction	kPa	0.3	0.5	0.9
Strain at failure	%	5.5	10.0	19.0
Failure Type		Intermediate	Intermediate	Intermediate
Corrected deviator stress	kPa	16	22	34
Undrained shear stress	kPa	8	11	17

Cohesion	kPa	4.8	Friction Angle	0	3.3

	Init	tial Conditio	ons			Borobolo	BU12
Sample length mr	n	168.23	Rate of strain	%/min	2.0	Dorenole	DI 142
Sample diameter mr	n	84.23	Bulk Density	Mg/m ³	1.88	Sample	UT
Membrane type		Latex	Dry Density	Mg/m ³	1.41	Depth (m)	1 50 5 10
Membrane thickness mr	n	0.20	Moisture Content	%	33	Debui (III)	4.50-5.10

Undisturbed sample, taken directly from the sample tube and retaining axial orientation

DETERMINATION OF MULTI STAGE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION Tested in accordance with BS 1377 : Part 7 : 9.0 : 1990

Borehole	BH41
Sample	В
Depth (m)	2.20-4.50

Specimen Details

Particle Density (Assumed)	(Mg/m3)	2.65		
Specimen Number		1	2	3
Length	mm	60.09	60.09	60.09
Width	mm	60.02	60.02	60.02
Height	mm	24.77	24.71	24.62
Initial Moisture Content	%	24	24	24
Initial Bulk Density	Mg/m3	1.90	1.91	1.91
Initial Dry Density	Mg/m3	1.53	1.53	1.54
Optimum Moisture Content	%		-	
Maximum Dry Density	Mg/m3		-	
Shearing Stage				
Normal Pressure	kPa	40	80	160
Peak Conditions				
Rate of horizontal displacement	mm/min	0.125	0.125	0.125
Peak shear stress	kPa	31.331	57.949	106.471
Horizontal displacement at peak	mm	2.78	2.89	3.14
Residual Conditions				
Rate of horizontal displacement	mm/min	-	-	-
Residual shear stress	kPa	-	-	-
Final cumulative displacement	mm	-	-	-
Total traverses		-	-	-
Method of reversal		-	-	-
Final Moisture Content	%	22	22	22

Shear Strength Parameters

Peak Condition

Apparent Cohesion	kPa	7.1
Angle of Shearing Resistance	0	32.0

Residual Condition

Apparent Cohesion	kPa	-
Angle of Shearing Resistance	0	-

Test Notes

Preparation - <2mm material prepared in accordance with BS 1377 : Part 7 : 1990 : Clause 4.4.3 Test condition - Submerged

Test specimen remoulded at natural moisture content using a 2.5kg rammer.

Peak Conditions

Apparent Cohesion	kPa	7.1			
Angle of Shearing Resistance	0		32.0		
Normal Pressure	kPa	40	80	160	
Peak shear stress	kPa	31.331	57.949	106.471	

Residual Conditions

Apparent Cohesion	kPa		-	
Angle of Shearing Resistance	0		-	
Normal Pressure	kPa	-	-	-
Residual shear stress	kPa	-	-	-

Borehole	BH42
Sample	В
Depth (m)	2.70-4.00

Specimen Details

Particle Density (Assumed)	(Mg/m3)	2.65		
Specimen Number		1	2	3
Length	mm	59.75	59.75	59.75
Width	mm	60.07	60.07	60.07
Height	mm	25.00	25.00	25.00
Initial Moisture Content	%	27	27	27
Initial Bulk Density	Mg/m3	1.89	1.89	1.89
Initial Dry Density	Mg/m3	1.48	1.48	1.48
Optimum Moisture Content	%		-	
Maximum Dry Density	Mg/m3		-	
Shearing Stage				
Normal Pressure	kPa	30	60	120
Peak Conditions				
Rate of horizontal displacement	mm/min	0.125	0.125	0.125
Peak shear stress	kPa	25.075	43.464	76.619
Horizontal displacement at peak	mm	0.94	2.00	2.15
Residual Conditions				
Rate of horizontal displacement	mm/min	-	-	-
Residual shear stress	kPa	-	-	-
Final cumulative displacement	mm	-	-	-
Total traverses		-	-	-
Method of reversal		-	-	
Final Moisture Content	%	25	23	21

Shear Strength Parameters

Peak Condition

Apparent Cohesion	kPa	8.5
Angle of Shearing Resistance	0	29.5

Residual Condition

Apparent Cohesion	kPa	-
Angle of Shearing Resistance	0	-

Test Notes

Preparation - <2mm material prepared in accordance with BS 1377 : Part 7 : 1990 : Clause 4.4.3 Test condition - Submerged

Test specimen remoulded at natural moisture content using a 2.5kg rammer.

Peak Conditions

Apparent Cohesion	kPa	8.5			
Angle of Shearing Resistance	0		29.5		
Normal Pressure	kPa	30	60	120	
Peak shear stress	kPa	25.075	43.464	76.619	

Residual Conditions

Apparent Cohesion	kPa		-	
Angle of Shearing Resistance	0		-	
Normal Pressure	kPa	-	-	-
Residual shear stress	kPa	-	-	-

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

Certificate No :

To :

Client :

20/1161 - 01-1 Anne Simpson Geotechnics Limited The Geotechnical Centre Unit 5 Orchard Road, Heron Road Sowton Industrial Estate

Exeter, Devon EX2 7NR

Dear Sirs,

CHALK CRUSHING VALUE (CCV) - BS 1377 : PART 4 : 1990

Introduction

We refer to a bulk sample taken from Aquind Drainage Design, Additional Investigation and delivered to our laboratory on 07th December 2020.

Material & Source

Sample Reference	:	TP24, LB, 0.45-1.60m
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	TP24, LB, 0.45-1.60m
Designation (d/D)	:	Not Supplied
Description	:	Off-white clayey fine to coarse highly weathered CHALK
Date Sampled	:	Not Supplied
Date Tested	:	07th December 2020 Onwards
Source	:	PE201667 - Aquind Drainage Design, Additional Investigation
% Greater than 10mm	:	14
Test Results:		

CHALK CRUSHING VALUE (CCV)

2.9

Remarks

Test was deemed to be complete as maximum of 50 blows was reached

Approved for Issue	2	
	Date	22/12/2020
T McLelland (Director)		
Issue No:01	Page	e 1 of 1

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

Certificate No :

To :

Client :

20/1161 - 01-2 Anne Simpson Geotechnics Limited The Geotechnical Centre Unit 5 Orchard Road, Heron Road Sowton Industrial Estate Exeter, Devon

EX2 7NR

Dear Sirs,

CHALK CRUSHING VALUE (CCV) - BS 1377 : PART 4 : 1990

Introduction

We refer to a bulk sample taken from Aquind Drainage Design, Additional Investigation and delivered to our laboratory on 07th December 2020.

Material & Source

Sample Reference	:	TP27, D, 1.30m
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	TP27, D, 1.30m
Designation (d/D)	:	Not Supplied
Description	:	Off-white clayey fine to coarse highly weathered CHALK
Date Sampled	:	Not Supplied
Date Tested	:	07th December 2020 Onwards
Source	:	PE201667 - Aquind Drainage Design, Additional Investigation
% Greater than 10mm	:	0
Test Results:		

CHALK CRUSHING VALUE (CCV)

2.7

Remarks

Test was deemed to be complete as maximum of 50 blows was reached

T McLelland (Director)

Issue No:01

Date

22/12/2020

Page 1 of 1

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org Website: www.mattest.org

Certificate No :

To :

Client :

20/1161 - 01-3 Anne Simpson Geotechnics Limited The Geotechnical Centre Unit 5 Orchard Road, Heron Road Sowton Industrial Estate Exeter, Devon

EX2 7NR

Dear Sirs,

CHALK CRUSHING VALUE (CCV) - BS 1377 : PART 4 : 1990

Introduction

We refer to a bulk sample taken from Aquind Drainage Design, Additional Investigation and delivered to our laboratory on 07th December 2020.

Material & Source

Sample Reference	:	BH40, B, 1.50-3.00m
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	BH40, B, 1.50-3.00m
Designation (d/D)	:	Not Supplied
Description	:	Off-white clayey fine to coarse highly weathered CHALK
Date Sampled	:	Not Supplied
Date Tested	:	07th December 2020 Onwards
Source	:	PE201667 - Aquind Drainage Design, Additional Investigation
% Greater than 10mm	:	26
Test Results:		

CHALK CRUSHING VALUE (CCV)

0.3

Remarks

Test was deemed to be complete as no further penetration occurred

T McLelland (Director)

Issue No:01

Date

22/12/2020

10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow G33 3NQ

Tel: 0141 774 4032

email: info@mattest.org

Website: www.mattest.org

Certificate No :

To :

Client :

20/1161 - 01-4 Anne Simpson Geotechnics Limited The Geotechnical Centre Unit 5 Orchard Road, Heron Road Sowton Industrial Estate Exeter, Devon

EX2 7NR

Dear Sirs,

CHALK CRUSHING VALUE (CCV) - BS 1377 : PART 4 : 1990

Introduction

We refer to a bulk sample taken from Aquind Drainage Design, Additional Investigation and delivered to our laboratory on 07th December 2020.

Material & Source

Sample Reference	:	BH41, B, 1.40-2.00m
Sampled By	:	Client
Sampling Certificate	:	Not Supplied
Location	:	BH41, B, 1.40-2.00m
Designation (d/D)	:	Not Supplied
Description	:	Off-white clayey fine to coarse highly weathered CHALK
Date Sampled	:	Not Supplied
Date Tested	:	07th December 2020 Onwards
Source	:	PE201667 - Aquind Drainage Design, Additional Investigation
% Greater than 10mm	:	19
Test Results:		

CHALK CRUSHING VALUE (CCV)

0.5

Remarks

Test was deemed to be complete as no further penetration occurred

Date

22/12/2020

T McLelland (Director)

Issue No:01

BS1377 : Part 6 : Clause 3.5 : 1990

CONSOLIDATION PROPERTIES IN A HYDRAULIC CELL

One-way vertical drainage with rigid loading

	BH41			Description:				
Depth (m)	3 20-3 80							
Somple Type	5.20-3.00 LIT				Von wook off white	tructure -	СПИК	
Distance from ton	20 mm				very weak on white s	uciuleo	UTALN.	
Orientetion	20 mm							
Onentation	venical							
SAMPLE DE TAILS			Indiatu	rbad				
Sample preparation	mala		Cood	Undisturbed				
Condition and quality of sal	npie		Good No diffic					
	paration			unies				
Apparatus used			Hydroul	ic consolidation	coll of 70 mm nominal diama	tor		
Cell preparation			Check r	erformed in ac	cordance with Clause 3.2.6			
			Equal si	train	cordance with clause 5.2.0			
Drainage conditions			One-wa	v vertical				
Pore pressure measureme	ent location		Centre (of base				
Diameter of central drain		mm	n/a	51 5430				
Method of forming the well			n/a					
Material used for centre dra	ain well		n/a					
INITIAL CONDITIONS								
Diameter		mm	79.02		Bulk density	Ma/m³	1.89	
Height		mm	25.11		Dry density	Ma/m³	1.48	
Moisture content		%	28.1		Voids ratio	ing/iii	0.829	
Particle density	Μ	la/m³	2.70 (As	ssumed)	Initial degree of saturation	%	91.6	
SATURATION		9/		,		,,,		
Method			Satu	ration by increm	nents of cell pressure only			
Pressure used			50 kF	Pa increments				
Volume of water taken in		тL	0					
Final diaphragm pressure		kPa	200					
Final pore pressure		kPa	186					
Final B value			0.97					
Duration		days	1					
UNDRAINED LOADING / UN	ILOADING	-						
Stage number			1					
Stage type			Load					
Diaphragm pressure		kPa	370					-
Height change		тт	0.00					
Pore pressure increase		kPa	168					
CONSOLIDATION (drained	loading/unloading	g)						
Back pressure		kPa	300					
Effective stress at end of s	tage	kPa	70					
Voids ratio at end of stage			0.581					
Pore pressure dissipation a	at end of stage	%	100					
Coeff. of Volume Compres	sibility (mv) m	²/MN	8.2					
Coefficient of Consolidation	n (cv) m²/	/year	130					
Method for deriving cv (incl	luding method))		t50 (b)					
PERMEABILITY								
Vertical Cell pressure		kPa	370					
Inlet pressure		kPa	295					
Outlet pressure		kPa	305					
Mean effective stress		kPa	70					
Coefficient corrected to 20°	°C	kPa	1.4E-09					
Duration		days	6					
FINAL CONDITIONS								
Wet density	M	lg/m³	1.89					
Moisture content		%	29.6					
	-							
Checked and Approved by	Project Number:							
				GEO	/ 32413			
	Project Name:							GEOLARS)*
			• •					OLOLAD3
			AQ		AINAGE DESIGN			
J A Reynolds - Laboratory Manager				20	/1161			

 Z//01/2021
 L

 Test Report By GEOLABS Limited
 Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

 Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

BS1377 : Part 6 : Clause 3.5 : 1990 CONSOLIDATION PROPERTIES IN A HYDRAULIC CELL							
One-way ve	ertical drainage with rigid loading						
LocationBH41Depth (m)3.20-3.80Sample TypeUTDistance from top20 mmOrientationVertical	Description: Very weak off white structured CHALK.						
<section-header></section-header>	Image: constraint of the state of the s						
Checked and Approved by Project Number:							
J A Reynolds - Laboratory Manager 27/01/2021	GEO / 32413 QUIND DRAINAGE DESIGN 20/1161						
Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordst Client : MATtest Limited	hire, WD25 9XX Page 3 of 4 (Ref 1611759026)						

Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

BS1377 : Part 6 : Clause 3.5 : 1990

CONSOLIDATION PROPERTIES IN A HYDRAULIC CELL

One-way vertical drainage with rigid loading

	On	e-way vertical	urainage with rigid loading		
Location	BH42	De	scription:		
Depth (m)	4.30-5.10				
Sample Type	UT		Very WEAk	White fissured CHALK	
Distance from top	01		VeryWEAR		
Orientation	Vertical				
Chematon	Vertical				
SAMPLE DETAILS					
Sample preparation		Undisturbed			
Condition and quality of sa	imple	Good			
Remarks on specimen pre	paration	No difficultie	S		
TEST DETAILS					
Apparatus used		Hydraulic co	nsolidation cell of 79 mm nomina	al diameter	
Cell preparation		Check perfo	rmed in accordance with Clause	3.2.6	
Type of loading		Equal strain			
Drainage conditions		One-way ver	tical		
Pore pressure measureme	ent location	Centre of ba	se		
Diameter of central drain	mm	n/a			
Method of forming the well		n/a			
Material used for centre dr	ain well	n/a			
INITIAL CONDITIONS					
Diameter	mm	79.01	Bulk density	<i>Mg/m</i> ³ 1.91	
Height	mm	25.11	Dry density	<i>Mg/m</i> ³ 1.50	
Moisture content	%	27.5	Voids ratio	0.806	
Particle density	Mg/m ³	2.70 (Assum	ed) Initial degree of sa	aturation % 92.1	
SATURATION					
Method		Saturation	by increments of cell pressure	only	
Pressure used		50 kPa in	crements		
Volume of water taken in	mL I-De	0			
Final diaphragm pressure	KPa kDa	300			
Final pole pressure	KPa	260			
Duration	davs	0.95			
		I			
Stage number		1			
Stage type		Load			
Diaphragm pressure	kPa	400			I
Height change	mm	0.09			
Pore pressure increase	kPa	98			
CONSOLIDATION (drained	loading/unloading)				
Back pressure	kPa	300			
Effective stress at end of s	tage kPa	100			
Voids ratio at end of stage		0.430			
Pore pressure dissipation	at end of stage %	100			
Coeff. of Volume Compres	sibility (mv) m²/MN	9.5			
Coefficient of Consolidatio	n (cv) <i>m²/year</i>	1600			
Method for deriving cv (inc	luding method))	t50 (b)			
PERMEABILITY					
Vertical Cell pressure	kPa	400			
Inlet pressure	kPa	295			
Outlet pressure	kPa	305			
Mean effective stress	kPa	100			
Coefficient corrected to 20	°C kPa	5.9E-09			
Duration	days	6			
FINAL CONDITIONS	■ <i>■</i>	0.04			
vvet density	Mg/m ³	2.31			
	%	30.0			
<u> </u>					1
Checked and Approved by	Project Number:				
			GEO / 32413		
	Project Name:				GEOLARS
				CN	010100
		AQUI		GIN	
J A Reynolds - Laboratory Manager			20/1161		

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

BS1377 : Part 6 : Clause 3.5 : 1990 CONSOLIDATION PROPERTIES IN A HYDRAULIC CELL	
Location BH42 Depth (m) 4.30-5.10 Sample Type UT Distance from top Vertical	
<complex-block></complex-block>	
Checked and Approved by Project Number: GEO / 32413 Project Name: AQUIND DRAINAGE DESIGN 27/01/2021	EOLABS

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : MATtest Limited, 10 Queenslie Point, Queenslie Industrial Estate, 120 Stepps Road, Glasgow, G33 3NQ

APPENDIX II

Contamination Laboratory Testing Results

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-32163-1		
Initial Date of Issue:	10-Dec-2020		
Client	Geotechnics Ltd		
Client Address:	Unit 5 Orchard Court Heron Road Sowton Industrial Estate Exeter Devon EX2 7LL		
Contact(s):	Hannah Dwane Anne Simpson Matthew Yates		
Project	PE201667 Aquind Additional Ground Investigation		
Quotation No.:	Q20-22266	Date Received:	25-Nov-2020
Order No.:	OE27857	Date Instructed:	04-Dec-2020
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	10-Dec-2020
Date Approved:	10-Dec-2020		
Approved By:	_		
Details:	Glynn Harvey, Technical Manager		

mc

Final Report

-

2183

<u>Results - Soil</u>

Client: Geotechnics Ltd	Chemtest Job No.:			20-32163	20-32163	20-32163	
Quotation No.: Q20-22266	(Chemtest Sample ID.:			1102916	1102918	1102919
		Sa	ample Lo	ocation:	TP27	TP28	TP28
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.30	0.20	0.30
		Bot	tom Dep	oth (m):		0.30	1.00
			Date Sa	ampled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
АСМ Туре	U	2192		N/A		-	
Asbestos Identification	U	2192		N/A		No Asbestos Detected	
ACM Detection Stage	U	2192		N/A		-	
Moisture	Ν	2030	%	0.020	18	3.0	2.4
рН	М	2010		4.0	8.4	8.8	9.0
Magnesium (Water Soluble)	N	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	М	2175	%	0.010	0.013	0.052	0.010
Chloride (Water Soluble)	М	2220	g/l	0.010	< 0.010	< 0.010	< 0.010
Nitrate (Water Soluble)	Ν	2220	g/l	0.010	< 0.010	0.012	< 0.010
Cyanide (Total)	М	2300	mg/kg	0.50		[B] < 0.50	
Ammonium (Water Soluble)	М	2120	g/l	0.01	< 0.01	< 0.01	< 0.01
Sulphate (Acid Soluble)	М	2430	%	0.010	0.020	0.092	0.030
Arsenic	М	2450	mg/kg	1.0		24	
Cadmium	М	2450	mg/kg	0.10		0.60	
Chromium	М	2450	mg/kg	1.0		13	
Copper	М	2450	mg/kg	0.50		12	
Mercury	М	2450	mg/kg	0.10		< 0.10	
Nickel	М	2450	mg/kg	0.50		11	
Lead	М	2450	mg/kg	0.50		78	
Zinc	М	2450	mg/kg	0.50		87	
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50		< 0.50	
Organic Matter	М	2625	%	0.40		8.6	
Total TPH >C6-C40	М	2670	mg/kg	10		[B] 320	
Naphthalene	М	2700	mg/kg	0.10		< 0.10	
Acenaphthylene	М	2700	mg/kg	0.10		< 0.10	
Acenaphthene	М	2700	mg/kg	0.10		< 0.10	
Fluorene	М	2700	mg/kg	0.10		< 0.10	
Phenanthrene	М	2700	mg/kg	0.10		1.4	
Anthracene	М	2700	mg/kg	0.10		0.48	
Fluoranthene	М	2700	mg/kg	0.10		4.5	
Pyrene	М	2700	mg/kg	0.10		4.9	
Benzo[a]anthracene	М	2700	mg/kg	0.10		2.6	
Chrysene	М	2700	mg/kg	0.10		2.6	
Benzo[b]fluoranthene	М	2700	mg/kg	0.10		4.2	
Benzo[k]fluoranthene	М	2700	mg/kg	0.10		1.8	

Client: Geotechnics Ltd		Chemtest Job No.:			20-32163	20-32163	20-32163
Quotation No.: Q20-22266	(Chemtest Sample ID.:			1102916	1102918	1102919
		Sample Location:			TP27	TP28	TP28
			Sampl	е Туре:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.30	0.20	0.30
		Bot	tom Dep	oth (m):		0.30	1.00
			Date Sa	ampled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
Benzo[a]pyrene	М	2700	mg/kg	0.10		3.5	
Indeno(1,2,3-c,d)Pyrene	М	2700	mg/kg	0.10		2.4	
Dibenz(a,h)Anthracene	М	2700	mg/kg	0.10		0.70	
Benzo[g,h,i]perylene	М	2700	mg/kg	0.10		2.5	
Total Of 16 PAH's	М	2700	mg/kg	2.0		32	
Dichlorodifluoromethane	U	2760	µg/kg	1.0		[B] < 1.0	
Chloromethane	М	2760	µg/kg	1.0		[B] < 1.0	
Vinyl Chloride	М	2760	µg/kg	1.0		[B] < 1.0	
Bromomethane	М	2760	µg/kg	20		[B] < 20	
Chloroethane	U	2760	µg/kg	2.0		[B] < 2.0	
Trichlorofluoromethane	М	2760	µg/kg	1.0		[B] < 1.0	
1,1-Dichloroethene	М	2760	mg/kg	1.0		[B] < 1.0	
Trans 1,2-Dichloroethene	М	2760	mg/kg	1.0		[B] < 1.0	
1,1-Dichloroethane	М	2760	µg/kg	1.0		[B] < 1.0	
cis 1,2-Dichloroethene	М	2760	µg/kg	1.0		[B] < 1.0	
Bromochloromethane	U	2760	µg/kg	5.0		[B] < 5.0	
Trichloromethane	М	2760	µg/kg	1.0		[B] < 1.0	
1,1,1-Trichloroethane	М	2760	µg/kg	1.0		[B] < 1.0	
Tetrachloromethane	М	2760	µg/kg	1.0		[B] < 1.0	
1,1-Dichloropropene	U	2760	µg/kg	1.0		[B] < 1.0	
Benzene	М	2760	µg/kg	1.0		[B] < 1.0	
1,2-Dichloroethane	М	2760	µg/kg	2.0		[B] < 2.0	
Trichloroethene	N	2760	µg/kg	1.0		[B] < 1.0	
1,2-Dichloropropane	М	2760	µg/kg	1.0		[B] < 1.0	
Dibromomethane	М	2760	µg/kg	1.0		[B] < 1.0	
Bromodichloromethane	М	2760	µg/kg	5.0		[B] < 5.0	
cis-1,3-Dichloropropene	N	2760	µg/kg	10		[B] < 10	
Toluene	М	2760	µg/kg	1.0		[B] < 1.0	
Trans-1,3-Dichloropropene	N	2760	µg/kg	10		[B] < 10	
1,1,2-Trichloroethane	М	2760	µg/kg	10		[B] < 10	
Tetrachloroethene	М	2760	µg/kg	1.0		[B] < 1.0	
1,3-Dichloropropane	U	2760	µg/kg	2.0		[B] < 2.0	
Dibromochloromethane	U	2760	µg/kg	10		[B] < 10	
1,2-Dibromoethane	М	2760	µg/kg	5.0		[B] < 5.0	
Chlorobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
1,1,1,2-Tetrachloroethane	М	2760	µg/kg	2.0		[B] < 2.0	
Ethylbenzene	М	2760	µg/kg	1.0		[B] < 1.0	

Client: Geotechnics Ltd		Chemtest Job No.:			20-32163	20-32163	20-32163
Quotation No.: Q20-22266	(Chemtest Sample ID.:			1102916	1102918	1102919
		Sample Location:			TP27	TP28	TP28
			Sample	е Туре:	SOIL	SOIL	SOIL
			Тор Dep	oth (m):	0.30	0.20	0.30
		Bot	tom Dep	oth (m):		0.30	1.00
			Date Sa	ampled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
m & p-Xylene	М	2760	µg/kg	1.0		[B] < 1.0	
o-Xylene	М	2760	µg/kg	1.0		[B] < 1.0	
Styrene	М	2760	µg/kg	1.0		[B] < 1.0	
Tribromomethane	U	2760	µg/kg	1.0		[B] < 1.0	
Isopropylbenzene	М	2760	µg/kg	1.0		[B] < 1.0	
Bromobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
1,2,3-Trichloropropane	N	2760	µg/kg	50		[B] < 50	
N-Propylbenzene	U	2760	µg/kg	1.0		[B] < 1.0	
2-Chlorotoluene	М	2760	µg/kg	1.0		[B] < 1.0	
1,3,5-Trimethylbenzene	М	2760	µg/kg	1.0		[B] < 1.0	
4-Chlorotoluene	U	2760	µg/kg	1.0		[B] < 1.0	
Tert-Butylbenzene	U	2760	µg/kg	1.0		[B] < 1.0	
1,2,4-Trimethylbenzene	М	2760	µg/kg	1.0		[B] < 1.0	
Sec-Butylbenzene	U	2760	µg/kg	1.0		[B] < 1.0	
1,3-Dichlorobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
4-Isopropyltoluene	U	2760	µg/kg	1.0		[B] < 1.0	
1,4-Dichlorobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
N-Butylbenzene	U	2760	µg/kg	1.0		[B] < 1.0	
1,2-Dichlorobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
1,2-Dibromo-3-Chloropropane	U	2760	µg/kg	50		[B] < 50	
1,2,4-Trichlorobenzene	М	2760	µg/kg	1.0		[B] < 1.0	
Hexachlorobutadiene	U	2760	µg/kg	1.0		[B] < 1.0	
1,2,3-Trichlorobenzene	U	2760	µg/kg	2.0		[B] < 2.0	
Methyl Tert-Butyl Ether	М	2760	µg/kg	1.0		[B] < 1.0	
N-Nitrosodimethylamine	М	2790	mg/kg	0.50		[B] < 0.50	
Phenol	М	2790	mg/kg	0.50		[B] < 0.50	
2-Chlorophenol	М	2790	mg/kg	0.50		[B] < 0.50	
Bis-(2-Chloroethyl)Ether	М	2790	mg/kg	0.50		[B] < 0.50	
1,3-Dichlorobenzene	М	2790	mg/kg	0.50		[B] < 0.50	
1,4-Dichlorobenzene	N	2790	mg/kg	0.50		[B] < 0.50	
1,2-Dichlorobenzene	М	2790	mg/kg	0.50		[B] < 0.50	
2-Methylphenol	М	2790	mg/kg	0.50		[B] < 0.50	
Bis(2-Chloroisopropyl)Ether	М	2790	mg/kg	0.50		[B] < 0.50	
Hexachloroethane	N	2790	mg/kg	0.50		[B] < 0.50	
N-Nitrosodi-n-propylamine	М	2790	mg/kg	0.50		[B] < 0.50	
4-Methylphenol	М	2790	mg/kg	0.50		[B] < 0.50	
Nitrobenzene	М	2790	mg/kg	0.50		[B] < 0.50	

Client: Geotechnics Ltd		Chemtest Job No.:			20-32163	20-32163	20-32163
Quotation No.: Q20-22266	(Chemtest Sample ID.:			1102916	1102918	1102919
		Sample Location:			TP27	TP28	TP28
			Sampl	e Type:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.30	0.20	0.30
		Bot	tom Dep	oth (m):		0.30	1.00
			Date Sa	ampled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
Isophorone	М	2790	mg/kg	0.50		[B] < 0.50	
2-Nitrophenol	N	2790	mg/kg	0.50		[B] < 0.50	
2,4-Dimethylphenol	N	2790	mg/kg	0.50		[B] < 0.50	
Bis(2-Chloroethoxy)Methane	М	2790	mg/kg	0.50		[B] < 0.50	
2,4-Dichlorophenol	М	2790	mg/kg	0.50		[B] < 0.50	
1,2,4-Trichlorobenzene	М	2790	mg/kg	0.50		[B] < 0.50	
Naphthalene	М	2790	mg/kg	0.50		[B] < 0.50	
4-Chloroaniline	N	2790	mg/kg	0.50		[B] < 0.50	
Hexachlorobutadiene	М	2790	mg/kg	0.50		[B] < 0.50	
4-Chloro-3-Methylphenol	М	2790	mg/kg	0.50		[B] < 0.50	
2-Methylnaphthalene	М	2790	mg/kg	0.50		[B] < 0.50	
4-Nitrophenol	Ν	2790	mg/kg	0.50		[B] < 0.50	
Hexachlorocyclopentadiene	N	2790	mg/kg	0.50		[B] < 0.50	
2,4,6-Trichlorophenol	М	2790	mg/kg	0.50		[B] < 0.50	
2,4,5-Trichlorophenol	М	2790	mg/kg	0.50		[B] < 0.50	
2-Chloronaphthalene	М	2790	mg/kg	0.50		[B] < 0.50	
2-Nitroaniline	М	2790	mg/kg	0.50		[B] < 0.50	
Acenaphthylene	М	2790	mg/kg	0.50		[B] < 0.50	
Dimethylphthalate	М	2790	mg/kg	0.50		[B] < 0.50	
2,6-Dinitrotoluene	М	2790	mg/kg	0.50		[B] < 0.50	
Acenaphthene	М	2790	mg/kg	0.50		[B] < 0.50	
3-Nitroaniline	N	2790	mg/kg	0.50		[B] < 0.50	
Dibenzofuran	М	2790	mg/kg	0.50		[B] < 0.50	
4-Chlorophenylphenylether	М	2790	mg/kg	0.50		[B] < 0.50	
2,4-Dinitrotoluene	М	2790	mg/kg	0.50		[B] < 0.50	
Fluorene	М	2790	mg/kg	0.50		[B] < 0.50	
Diethyl Phthalate	М	2790	mg/kg	0.50		[B] < 0.50	
4-Nitroaniline	М	2790	mg/kg	0.50		[B] < 0.50	
2-Methyl-4,6-Dinitrophenol	N	2790	mg/kg	0.50		[B] < 0.50	
Azobenzene	М	2790	mg/kg	0.50		[B] < 0.50	
4-Bromophenylphenyl Ether	М	2790	mg/kg	0.50		[B] < 0.50	
Hexachlorobenzene	М	2790	mg/kg	0.50		[B] < 0.50	
Pentachlorophenol	N	2790	mg/kg	0.50		[B] < 0.50	
Phenanthrene	М	2790	mg/kg	0.50		[B] 0.61	
Anthracene	М	2790	mg/kg	0.50		[B] 1.8	
Carbazole	Μ	2790	mg/kg	0.50		[B] 0.75	
Di-N-Butyl Phthalate	М	2790	mg/kg	0.50		[B] < 0.50	

Client: Geotechnics Ltd		Chemtest Job No.:			20-32163	20-32163	20-32163
Quotation No.: Q20-22266	(Chemtest Sample ID.:			1102916	1102918	1102919
		Sample Location:			TP27	TP28	TP28
			Sampl	e Type:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.30	0.20	0.30
		Bot	tom Dep	oth (m):		0.30	1.00
			Date Sa	ampled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
Fluoranthene	М	2790	mg/kg	0.50		[B] 17	
Pyrene	М	2790	mg/kg	0.50		[B] 15	
Butylbenzyl Phthalate	М	2790	mg/kg	0.50		[B] < 0.50	
Benzo[a]anthracene	М	2790	mg/kg	0.50		[B] 8.4	
Chrysene	М	2790	mg/kg	0.50		[B] 8.0	
Bis(2-Ethylhexyl)Phthalate	N	2790	mg/kg	0.50		[B] < 0.50	
Di-N-Octyl Phthalate	М	2790	mg/kg	0.50		[B] < 0.50	
Benzo[b]fluoranthene	М	2790	mg/kg	0.50		[B] 15	
Benzo[k]fluoranthene	М	2790	mg/kg	0.50		[B] 4.9	
Benzo[a]pyrene	М	2790	mg/kg	0.50		[B] 13	
Indeno(1,2,3-c,d)Pyrene	М	2790	mg/kg	0.50		[B] 6.4	
Dibenz(a,h)Anthracene	М	2790	mg/kg	0.50		[B] 2.2	
Benzo[g,h,i]perylene	М	2790	mg/kg	0.50		[B] < 0.50	
PCB 28	U	2815	mg/kg	0.010		< 0.010	
PCB 52	U	2815	mg/kg	0.010		< 0.010	
PCB 90+101	U	2815	mg/kg	0.010		< 0.010	
PCB 118	U	2815	mg/kg	0.010		< 0.010	
PCB 153	U	2815	mg/kg	0.010		< 0.010	
PCB 138	U	2815	mg/kg	0.010		< 0.010	
PCB 180	U	2815	mg/kg	0.010		< 0.010	
Total PCBs (7 Congeners)	U	2815	mg/kg	0.10		< 0.10	
Alpha-HCH	N	2840	mg/kg	0.20		< 0.20	
Gamma-HCH (Lindane)	N	2840	mg/kg	0.20		< 0.20	
Beta-HCH	N	2840	mg/kg	0.20		< 0.20	
Delta-HCH	N	2840	mg/kg	0.20		< 0.20	
Heptachlor	N	2840	mg/kg	0.20		< 0.20	
Aldrin	N	2840	mg/kg	0.20		< 0.20	
Heptachlor Epoxide	N	2840	mg/kg	0.20		< 0.20	
Gamma-Chlordane	N	2840	mg/kg	0.20		< 0.20	
Alpha-Chlordane	N	2840	mg/kg	0.20		< 0.20	
Endosulfan I	N	2840	mg/kg	0.20		< 0.20	
4,4-DDE	N	2840	mg/kg	0.20		< 0.20	
Dieldrin	N	2840	mg/kg	0.20		< 0.20	
Endrin	N	2840	mg/kg	0.20		< 0.20	
4,4-DDD	N	2840	mg/kg	0.20		< 0.20	
Endosulfan II	N	2840	mg/kg	0.20		< 0.20	
Endrin Aldehyde	N	2840	mg/kg	0.20		< 0.20	

<u>Results - Soil</u>

Client: Geotechnics Ltd		Che	mtest Jo	ob No.:	20-32163	20-32163	20-32163
Quotation No.: Q20-22266	(Chemte	est Sam	ple ID.:	1102916	1102918	1102919
		Sa	ample Lo	ocation:	TP27	TP28	TP28
			Sample	e Type:	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.30	0.20	0.30
		Bot	ttom Dep	oth (m):		0.30	1.00
			Date Sa	mpled:	16-Nov-2020	19-Nov-2020	19-Nov-2020
			Asbest	os Lab:		DURHAM	
Determinand	Accred.	SOP	Units	LOD			
4,4-DDT	N	2840	mg/kg	0.20		< 0.20	
Endosulfan Sulphate	N	2840	mg/kg	0.20		< 0.20	
Methoxychlor	N	N 2840 mg/kg 0.20				< 0.20	
Endrin Ketone	N	N 2840 mg/kg 0.20				< 0.20	
Total Phenols	М	2920	mg/kg	0.30		< 0.30	

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1102918			TP28	19-Nov-2020	В	Amber Glass 250ml
1102918			TP28	19-Nov-2020	В	Amber Glass 60ml
1102918			TP28	19-Nov-2020	В	Plastic Tub 1000g

Test Methods

SOP	Title	Parameters included	Method summary		
2010	pH Value of Soils	рН	pH Meter		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry		
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.		
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.		
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.		
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.		
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.		
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.		
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID		
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)		
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.		
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS		
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS		
2840	Organochlorine (O-Cl) Pesticides in Soils by GC-MS	Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands	Dichloromethane extraction / GC-MS		
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.		

Report Information

ney	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX 12

Investigation Techniques and General Notes

INTRODUCTION

The following brief review of Ground Investigation techniques, generally used as part of most Site Investigations in the UK, summarises their methodology, advantages and limitations. Detailed descriptions of the techniques are available and can be provided on request. This review should be read in conjunction with the accompanying General Notes.

<u>TRIAL PITS</u>

The trial pit is amongst the simplest yet most effective means of identifying shallow ground conditions on a site. Its advantages include simplicity, speed, potential accuracy and cost-effectiveness. The trial pit is most commonly formed using a back-acting excavator which can typically determine ground conditions to some 4 metres below ground level. Hand excavation is often used to locate, expose and detail existing foundations, features or services. In general, it is difficult to extend pits significantly below the water table in predominantly granular soils, where flows can cause instability. Unless otherwise stated, the trial pits will not have been provided with temporary side support during their construction. Under such active significant been made from the ground surface and samples taken from the excavator bucket.

Where access for personnel is required to allow close observation of the exposed strata, the taking of samples and the carrying out of in situ tests, the sides of the trial pits (Observation Pits in BS 5930:2015) will be made safe using temporary supports or the sides battered back to a stable angle. Some limited access to such Trial Pits (Observation Pits) at depths less than I m may be allowed in stable conditions or where the sides are benched or battered back to a safe angle.

Trends in strata type, level and thickness can be determined, shear surfaces identified and the behaviour of plant, excavation sides and excavated materials can be related to the construction process. They are particularly valuable in land slip investigations. Some types of in situ test can be undertaken in such pits and large disturbed or block samples obtained.

CABLE PERCUSSION BORING

The light Cable Percussion technique of soft ground boring, typically at a diameter of 150mm, is a well-established simple and flexible method of boring vertical holes and generally allows data to be obtained in respect of strata conditions other than rock. A tubular cutter (for cohesive soils) or shell with a flap valve (for granular soils) is repeatedly lifted and dropped using a winch and rope operating from an "A" frame. Soil which enters these tools is regularly removed and either sampled for subsequent examination or test, or laid to one side for later removal off site and licensed disposal or, if permitted by the Client, use as backfill. Steel casing will have been used to prevent collapse of the borehole sides where necessary. A degree of disturbance of soil and mixing of layers is inevitable and the presence of very thin layers of different soils within a particular stratum may not be identified. Changes in strata type can only be detected on recognition of a change in soil samples at the surface, after the interface has been passed. For the foregoing reasons, depth measurements should not be considered to be more accurate than 0.10 metre. The technique can determine ground conditions to depths in excess of 30 metres under suitable circumstances and usually causes less surface disturbance than trial pitting.

In cohesive soils cylindrical samples are retrieved by driving or pushing in 100mm nominal diameter tubes. In soft soils, piston sampling or vane testing may be undertaken. In granular soils and often in cohesive materials, in situ Standard Penetration Tests (SPT's) are performed. The SPT records the number of standard blows required to drive a 50mm diameter open or cone ended probe for 300mm after an initial 150mm penetration. A modified method of recording is used in denser strata. Small disturbed samples are obtained throughout.

ROTARY DRILLING

Rotary Drilling to produce cores by rotating an annular diamond-impregnated tube or barrel into the ground is the technique most appropriate to the forming of site investigation boreholes through rock or other hard strata. It has the advantage of being able to be used vertically or at an angle. Core diameters of less than 100mm are most common for site investigation purposes. Core is normally retrieved in plastic lining tubes. A flushing fluid such as air, water or foam is used to cool the bit and carry cuttings to the surface. Depths in excess of 60 metres can be achieved under suitable circumstances using rotary techniques, with minimal surface disturbance.

Examination of cores allows detailed rock description and generally enables angled discontinuity surfaces to be observed. However, vertical holes do not necessarily reveal the presence of vertical or near-vertical fissures or joint discontinuities. The core type and/or techniques used will depend on the ground conditions. Where open hole rotary drilling is employed, descriptions of strata result from examination at the surface of small particles ejected from the borehole in the flushing medium. In consequence, no indication of fissuring, bedding, consistency or degree of weathering can be obtained.

DYNAMIC SAMPLING

This technique involves the driving of an open-ended tube into the ground and retrieval of the soil which enters the tube. It was previously called window or windowless sampling. The term "window sample" arose from the original device which had a "window" or slot cut into the side of the tube through which samples were taken. This was superseded by the use of a thin-walled plastic liner to retrieve the soil sample from within a sampler (windowless sampling) which has a solid wall. Line diameters range from 36 to 86mm. Such samples can be used for qualitative logging, selection of samples for classification and chemical analysis and for obtaining a rudimentary assessment of strength.

Driving devices can be hand-held or machine mounted and the drive tubes are typically in 1m lengths. Depending on the type of rig used, the hole formed can be cased to prevent collapse of the borehole sides. Where the type of rig does not allow the insertion of casing, the success of this technique can be limited when soils and groundwater conditions are such that the sides of the hole collapse on withdrawal of the sampler. Obstructions within the ground, the density of the material or its strength can also limit the depth and rate of penetration of this light-weight investigation technique. Nevertheless, it is a valuable tool where access is constrained such as within buildings or on embankments. Depths of up to 10m can be achieved in suitable circumstances depending on the rig type but depths of 5m to 6m are more common.

EXPLORATORY HOLE RECORDS

The data obtained by these techniques are generally presented on Trial Pit, Borehole, Drillhole or Dynamic Sample Records. The descriptions of strata result from information gathered from a number of sources which may include published geological data, preliminary field observations and descriptions, in situ test results, laboratory test results and specimen descriptions. A key to the symbols and abbreviations used accompanies the records. The descriptions on the exploratory hole records accommodate but may not necessarily be identical to those on any preliminary records or the laboratory summaries.

The records show ground conditions at the exploratory hole locations. The degree to which they can be used to represent conditions between or beyond such holes, however, is a matter for geological interpretation rather than factual reporting and the associated uncertainties must be recognised.

DYNAMIC PROBING

This technique typically measures the number of blows of a standard weight falling over a standard height to advance a cone-ended rod over sequential standard distances (typically 100mm). Some devices measure the penetration of the probe per standard blow. It is essentially a profiling tool and is best used in conjunction with other investigation techniques where site-specific correlation can be used to delineate the distribution of soft or loose soils or the upper horizon of a dense or strong layer such as rock.

Both machine-driven and hand-driven equipment is available, the selection depending upon access restrictions and the depth of penetration required. It is particularly useful where access for larger equipment is not available, disturbance is to be minimised or where there are cost constraints. No samples are recovered and some techniques leave a sacrificial cone head in the ground. As with other lightweight techniques, progress is limited in strong or dense soils. The results are presented both numerically and graphically. Depths of up to 10m are commonly achieved in suitable circumstances.

The hand-driven DCP probing device has been calibrated by the Highways Agency to provide a profile of CBR values over a range of depths.

INSTRUMENTATION

The most common form of instrument used in site investigation is either the standpipe or else the standpipe piezometer which can be installed in investigation holes. They are used to facilitate monitoring of groundwater levels and water sampling over a period of time following site work. Normally a standpipe would be formed using rigid plastic tubing which has been perforated or slotted over much of its length whilst a standpipe piezometer would have a filter tip which would be placed at a selected level and the hole sealed above and sometimes below to isolate the zone of interest. Groundwater levels are determined using an electronic "dip meter" to measure the depth to the water surface from ground level. Piezometers can also be used to measure permeability. They are simple and inexpensive instruments for long term monitoring but response times can limit their use in dial areas and access to the ground surface at each instrument is necessary. Remote reading requires more sophisticated hydraulic, electronic or pneumatic equipment.

Settlement can be monitored using surface or buried target plates whilst lateral movement over a range of depths is monitored using slip indicator or inclinometer equipment.

GENERAL NOTES

- I. The report is prepared for the exclusive use of the Client named in the document and copyright subsists with Geotechnics Limited. Prior written permission must be obtained to reproduce all or part of the report. It is prepared on the understanding that its contents are only disclosed to parties directly involved in the current investigation, preparation and development of the site.
- Further copies may be obtained with the Client's written permission, from Geotechnics Limited with whom the master copy of the document will be retained.
- 3. The report and/or opinion is prepared for the specific purpose stated in the document and in relation to the nature and extent of proposals made available to Geotechnics Limited at that time. Re-consideration will be necessary should those details change. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Geotechnics Limited.
- 4. The assessment of the significance of the factual data, where called for, is provided to assist the Client and their Engineer and/or Advisers in the preparation of their designs.
- 5. The report is based on the ground conditions encountered in the exploratory holes together with the results of field and laboratory testing in the context of the proposed development. The data from any commissioned desk study and site reconnaissance are also drawn upon. There may be special conditions appertaining to the site, however, which are not revealed by the investigation and which may not be taken into account in the report.
- 6. Methods of construction and/or design other than those proposed by the designers or referred to in the report may require consideration during the evolution of the proposals and further assessment of the geotechnical and any geoenvironmental data would be required to provide discussion and evaluations appropriate to these methods.
- 7. The accuracy of results reported depends upon the technique of measurement, investigation and test used and these values should not be regarded necessarily as characteristics of the strata as a whole (see accompanying notes on Investigation Techniques). Where such measurements are critical, the technique of investigation will need to be reviewed and supplementary investigation undertaken in accordance with the advice of the Company where necessary.
- 8. The samples selected for laboratory test are prepared and tested in accordance with the relevant Clauses and Parts of BS EN ISO 17892 and BS 1377 Parts 1 to 8, where appropriate, in Geotechnics Limited's UKAS accredited Laboratory, where possible. A list of tests is given.
- 9. Tests requiring the use of another laboratory having UKAS accreditation where possible are identified.
- Any unavoidable variations from specified procedures are identified in the report.
- 11. Specimens are cut vertically, where this is relevant and can be identified, unless otherwise stated
- 12. All the data required by the test procedures are recorded on individual test sheets but the results in the report are presented in summary form to aid understanding and assimilation for design purposes. Where all details are required, these can be made available.
- 13. Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes, or on the possible presence of features based on either visual, verbal, written, cartographical, photographic or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

14. The Code of Practice for Ground Investigations – BS 5930:2015 calls for man-made soils to be described as Anthropogenic Ground with soils placed in an un-controlled manner classified as Made Ground and soils placed in a controlled manner as Fill. In view of the difficulty in always accurately determining the origin of man-made soils in exploratory holes, Geotechnics Limited classify such materials as Made Ground. Where soils can be clearly identified as being placed in a controlled manner then further classification of the soils as Fill has been added to the Exploratory Hole Records.

(G)

- 15. Classification of man-made soils is based on the inspection of retrieved samples or exposed excavations. Where it is obvious that foreign matter such as paper, plastic or metal is present, classification is clear. Frequently, however, for man-made soils that arise from the adjacent ground or from the backfilling of excavations, their visual characteristics can closely resemble those of undisturbed ground. Other evidence such as site history, exploratory hole location or other tests may need to be drawn upon to provide clarification. For these reasons, classification of soils on the exploratory hole records as either Made Ground or naturally occurring strata, the boundary between them and any interpretation that this gives rise to should be regarded as provisional and subject to re-evaluation in the light of further data.
- 16. The classification of materials as Topsoil is generally based on visual description and should not be interpreted to mean that the material so described complies with the criteria for Topsoil used in BS 3882:2015. Specific testing would be necessary where such a definition is a requirement.
- 17. Ground conditions should be monitored during the construction of the works and the report should be re-evaluated in the light of these data by the supervising geotechnical engineers.
- 18. Any comments on groundwater conditions are based on observations made at the time of the investigation, unless specifically stated otherwise. It should be noted, however, that the observations are subject to the method and speed of boring, drilling or excavation and that groundwater levels will vary due to seasonal or other effects.
- 19. Any bearing capacities for conventional spread foundations which are given in the report and interpreted from the investigation are for bases at a minimum depth of 1m below finished ground level in naturally occurring strata and at broadly similar levels throughout individual structures, unless otherwise stated. Typically they are based on serviceability criteria taking account of an assessment of the shear strength and/or density data obtained by the investigation. The foundations should be designed in accordance with the good practice embodied in BS 8004:2015 -Foundations, supplemented for housing by NHBC Standards. Foundation design is an iterative process and bearing pressures may need adjustment or other measures may need to be taken in the context of final layouts and levels prior to finalisation of proposals.
- 20. Unless specifically stated, the investigation does not take account of the possible effects of mineral extraction or of gases from fill or natural sources within, below or outside the site.
- 21. The costs or economic viability of the proposals referred to in the report, or of the solutions put forward to any problems encountered, will depend on very many factors in addition to geotechnical or geoenvironmental considerations and hence their evaluation is outside the scope of the report.

